
EBAMRGodunov

P. Colella
D. T. Graves
T. J. Ligocki

B. Van Straalen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

August 5, 2003

Contents

1 Introduction 2

2 Notation 2

3 Equations of Motion 3

4 Approximations to ∇ · F . 4

5 Flux Estimation 6

5.1 Flux Estimation in Two Dimensions . 6
5.2 Flux Estimation in Three Dimensions 9
5.3 Modificiations for R-Z Computations 13

5.3.1 Equations of Motion . 13
5.3.2 Flux Divergence Approximations 13
5.3.3 Primitive Variable Form of the Equations 14
5.3.4 Flux Registers . 15

5.4 Artifical Viscosity . 16

6 Slope Calculation 17

1

7 Computing fluxes at the irregular boundary 18

8 Class Hierarchy 19

8.1 Class EBAMRGodunov . 19
8.2 Class EBLevelGodunov . 21
8.3 Class EBPatchGodunov . 22
8.4 Class EBPhysIBC . 26

9 Results 27

1 Introduction

This document describes our numerical method for integrating systems of conservation
laws (e.g., the Euler equations of gas dynamics) on an AMR grid hierarchy with embedded
boundaries. We use an unsplit, second-order Godunov method, extending the algorithms
developed by Colella [Col90] and Saltzman [Sal94].

2 Notation

All these operations take place in a very similar context to that presented in [CGL+00].
For non-embedded boundary notation, refer to that document.
The standard (i, j, k) is not sufficient here to denote a computational cell as there can

be multiple VoFs per cell. We define v to be the notation for a VoF and f to be a face.
The function ind(v) produces the cell which the VoF lives in. We define v+(f) to be
the VoF on the high side of face f ; v−(f) is the VoF on the low side of face f ; f+

d (v)
is the set of faces on the high side of VoF v; f−d (v) is the set of faces on the low side
of VoF v, where d ∈ {x, y, z} is a coordinate direction (the number of directions is D).
Also, we compose these operators to represent the set of VoFs directly connected to a
given VoF: v+

d (v) = v+(f+
d (v)) and v−d (v) = v−(f−d (v)). The << operator shifts data

in the direction of the right hand argument. The shift operator can yield multiple VoFs.
In this case, the shift operator includes averaging the values at the shifted-to VoFs.
We follow the same approach in the EB case in defining multilevel data and operators

as we did for ordinary AMR. Given an AMR mesh hierarchy {Ωl}lmax
l=0 , we define the valid

VoFs on level l to be
V l
valid = ind−1(Ωl

valid) (1)

and composite cell-centered data

ϕcomp = {ϕl,valid}lmax
l=0 , ϕl,valid : V l

valid → Rm (2)

2

For face-centered data,

F l,d
valid = ind−1(Ωl,ed

valid)

~F l,valid = (F l,valid
0 , . . . , F

l,valid
D−1)

F
l,valid
d : F l,d

valid → Rm

(3)

For computations at cell centers the notation

CC = A | B | C

means that the 3-point formula A is used for CC if all cell centered values it uses are
available, the 2-point formula B is used if current cell borders the high side of the physical
domain (i.e., no high side value), and the 2-point formula C is used if current cell borders
the low side of the physical domain (i.e., no low side value). A value is “available” if its
VoF is not covered and is within the domain of computation. For computations at face
centers the analogous notation

FC = A | B | C

means that the 2-point formula A is used for FC if all cell centered values it uses are
available, the 1-point formula B is used if current face coincides with the high side of the
physical domain (i.e., no high side value), and the 1-point formula C is used if current
face coincided with the low side of the physical domain (i.e., no low side value).

3 Equations of Motion

We are solving a hyperbolic system of equations of the form

∂U

∂t
+

D−1∑

d=0

∂F d

∂xd
= S (4)

For 3D polytropic gas dynamics,

U =(ρ, ρux, ρuy, ρuz, ρE)T

F x =
(
ρux, ρu

2
x, ρuxuy, ρuxuz, ρuxE + uxp

)T

F y =
(
ρuy, ρuxuy, ρu

2
y, ρuyuz, ρuyE + uyp

)T

F z =
(
ρuz, ρuxuz, ρuzuy, ρu

2
z, ρuzE + uzp

)T

E =
γp

(γ − 1)ρ
+
|~u|2

2

(5)

We are given boundary conditions on faces at the boundary of the domain and on the em-
bedded boundary. We also assume there may be a change of variablesW = W (U) (W ≡

3

“primitive variables”) that can be applied to simplify the calculation of the characteristic
structure of the equations. This leads to a similar system of equations in W .

∂W

∂t
+

D−1∑

d=0

Ad(W)
∂W d

∂xd
= S ′

Ad = ∇UW · ∇UF
d · ∇WU

S ′ = ∇UW · S

(6)

For 3D polytropic gas dynamics,

W = (ρ, ux, uy, uz, p)
T

Ax =




ux ρ 0 0 0
0 ux 0 0 1

ρ

0 0 ux 0 0
0 0 0 ux 0
0 ρc2 0 0 ux




Ay =




uy 0 ρ 0 0
0 uy 0 0 0
0 0 uy 0 1

ρ

0 0 0 uy 0
0 0 ρc2 0 uy




Az =




uz 0 0 ρ 0
0 uz 0 0 0
0 0 uz 0 0
0 0 0 uz

1
ρ

0 0 0 ρc2 uz




4 Approximations to ∇ · F .

To obtain a second-order approximation of the flux divergence in conservative form, first
we must interpolate the flux to the face centroid. In two dimensions, this interpolation
takes the form

F̃
n+ 1

2
f = F

n+ 1
2

f + |x̄|(F
n+ 1

2

f<<sign(x̄)ed
− F

n+ 1
2

f) (7)

where x̄ is the centroid in the direction d perpendicular to the face normal. In three dimen-
sions, define (x̄, ȳ) to be the coordinates of the centroid in the plane (d1, d2) perpendicular

4

to the face normal.

F̃
n+ 1

2
f =F

n+ 1
2

f (1− x̄ȳ + |x̄ȳ|)+ (8)

F
n+ 1

2

f<<sign(x̄)ed
1 (|x̄| − |x̄ȳ|)+ (9)

F
n+ 1

2

f<<sign(x̄)ed
2 (|ȳ| − |x̄ȳ|)+ (10)

F
n+ 1

2

f<<sign(x̄)ed
1
<<sign(x̄)ed

2 (|x̄ȳ|) (11)

Centroids in any dimension are normalized by ∆x and centered at the cell center. This
interpolation is only done if the shifts that are used in the interpolation are uniquely-defined
and single-valued.
We then define the conservative divergence approximation.

∇ · ~F ≡ (D · ~F)c =
1

kvh
((

D−1∑

d=0

∑

±=+,−

∑

f∈Fd,±
v

±αf F̃
n+ 1

2
f) + αB

v F
B,n+ 1

2
v) (12)

The non-conservative divergence approximation is defined below.

∇ · ~F = (D · ~F)NC =
1

h

∑

±=+,−

D−1∑

d=0

±F̄
n+ 1

2
v,±,d (13)

F̄
n+ 1

2
v,±,d =





1

N(Fd,±
v)

∑
f∈Fd,±

v
F

n+ 1
2

f if N(Fd,±
v) > 0

F
covered,n+ 1

2
v,±,d otherwise

(14)

The preliminary update update of the solution of the solution takes the form:

Un−1
v = Un

v −∆t((1− kv)(D · ~F)NC
v + kv(D · ~F)cv) (15)

δM = −∆tkv(1− kv)((D · ~F)cv − (D · ~F)NC
v) (16)

δM is the total mass increment that has been unaccounted for in the preliminary update.
See the EBAMRTools document for how this mass gets redistributed in an AMR context.
On a single level, the redistribution takes the following form:

Un+1

v
′ := Un+1

v
′ + wv,v

′ , δMv (17)

v
′

∈ N (v), (18)

where N (v) is the set of VoFs that can be connected to v with a monotone path of
length ≤ 1. The weights are nonnegative, and satisfy

∑
v
′∈N (v)

κv
′wv,v

′ = 1.

5

5 Flux Estimation

Given Un
i and Sn

i , we want to compute a second-order accurate estimate of the fluxes:

F
n+ 1

2
f ≈ F d(x0+(i+ 1

2
ed)h, tn+ 1

2
∆t). Specifically, we want to compute the fluxes at the

center of the Cartesian grid faces corresponding to the faces of the embedded boundary
geometry. In addition, we want to compute fluxes at the centers of Cartesian grid faces
corresponding to faces adjacent to vofs, but that are completely covered. Pointwise oper-
ations are conceptually the same for both regular and irregular VoFs. In other operations
we specify both the regular and irregular VoF calculation. The transformations ∇UW

and ∇WU are functions of both space and time. We shall leave the precise centering of
these transformations vague as this will be application-dependent. In outline, the method
is given as follows.

5.1 Flux Estimation in Two Dimensions

1. Transform to primitive variables.

W n
v = W (Un

v) (19)

2. Compute slopes ∆dWv. This is described separately in section 6.

3. Compute the effect of the normal derivative terms and the source term on the
extrapolation in space and time from cell centers to faces. For 0 ≤ d < D,

Wv,±,d = W n
v +

1

2
(±I −

∆t

h
Ad

v)P±(∆
dWv)

Ad
v = Ad(Wv)

P±(W) =
∑

±λk>0

(lk ·W)rk

Wv,±,d = Wv,±,d +
∆t

2
∇UW · Sn

v

(20)

where λk are eigenvalues of A
d
i , and lk and rk are the corresponding left and right

eigenvectors. We then extrapolate to the covered faces. First we define the VoFs
involved.

d′ =1− d

sd =sign(nd)

vup =ind−1(ind(v) + sd
′

ed′ − sded)

vside =ind−1(ind(v) + sded)

vcorner =ind−1(ind(v) + sd
′

ed′)

(21)

6

Define W up,side,corner, extrapolations to the edges near the VoFs near v.

W up =Wvup,∓,d

W side =Wvside,∓,d − sd∆dW

W corner =Wvcorner,∓,d

∆dW =

{
∆dW n

vside if nd > nd′

∆dW n
vcorner otherwise

∆d′W =

{
∆d′W n

vcorner if nd > nd′

∆d′W n
vup otherwise

(22)

where the slopes are defined in section 6 If any of these vofs does not have a
monotone path to the original VoF v, we drop order the order of interpolation.

If |nd| < |nd′ |:

W full =
|nd|

|nd′ |
W corner+(1−

|nd|

|nd′ |
)W up−(

|nd|

|nd′ |
sd∆dW +sd

′

∆d′W) (23)

W covered
v,±,d =





W full if both exist

W up if only vup exists

W corner if only vcorner exists

W n
v if neither exists

(24)

If |nd| ≥ |nd′ |:

W full =
|nd′ |

|nd|
W corner+(1−

|nd′ |

|nd|
)W side−(

|nd′ |

|nd|
sd
′

∆d′W+sd∆dW) (25)

W covered
v,±,d =





W full if both exist

W side if only vside exists

W corner if only vcorner exists

W n
v if neither exists

(26)

7

4. Compute estimates of F d suitable for computing 1D flux derivatives ∂F d

∂xd
using a

Riemann solver for the interior, R, and for the boundary, RB.

F 1D
f = R(Wv−(f),+,d,Wv+(f),−,d, d)

| RB(Wv−(f),+,d, (i +
1

2
ed)h, d)

| RB(Wv+(f),−,d, (i +
1

2
ed)h, d)

d = dir(f)

(27)

5. Compute the covered fluxes F 1D,covered

F 1D, covered
v,+,d = R(Wv,+,d,W

covered
v,+,d , d)

F 1D, covered
v,−,d = R(W covered

v,−,d ,Wv,−,d, d)
(28)

6. Compute final corrections to Wi,±,d due to the final transverse derivatives. For
regular cells, this takes the following form.

W
n+ 1

2
i,±,d = nWi,±,d −

∆t

2h
∇UW · (F 1D

i+ 1
2
ed1
− F 1D

i− 1
2
ed1

) (29)

d 6= d1, 0 ≤ d, d1 < D

(30)

For irregular cells, we compute the transverse derivatives and use them to correct
the extrapolated values of U and obtain time-centered fluxes at centers of Cartesian
faces. In two dimensions, this takes the form

Dd,⊥Fv =
1

h
(F̄v,+,d1 − F̄v,−,d1)

F̄v,±,d′ =





1
N

v,±,d
′

∑
f∈F

v,±,d
′
F 1D

f ,±,d′
if Nv,±,d′ > 0

F 1D, covered

v,±,d′
otherwise

d 6= d1, 0 ≤ d, d1 < D

W
n+ 1

2
v,±,d =Wv,±,d −

∆t

2
∇UW (Dd,⊥Fv)

(31)

Extrapolate to covered faces with the procedure described above using W
n+ 1

2
·,∓,d to

form W
n+ 1

2
,covered

·,±,d .

8

7. Compute the flux estimate.

F
n+ 1

2
f = R(W

n+ 1
2

v−(f),+,d
,W

n+ 1
2

v+(f),−,d, d)

| RB(W
n+ 1

2

v−(f),+,d
, (i +

1

2
ed)h, d)

| RB(W
n+ 1

2

v+(f),−,d, (i +
1

2
ed)h, d)

F
n+ 1

2
,covered

v,−,d =R(W
n+ 1

2
,covered

v,+,d ,W
n+ 1

2
v,−,d, d)

F
n+ 1

2
,covered

v,+,d =R(W
n+ 1

2
v,+,d,W

n+ 1
2
,covered

v,+,d , d)

(32)

8. Modify the flux with artificial viscosity where the flow is compressive.

5.2 Flux Estimation in Three Dimensions

1. Transform to primitive variables.

W n
v = W (Un

v) (33)

2. Compute slopes ∆dWv. This is described separately in section 6.

3. Compute the effect of the normal derivative terms and the source term on the
extrapolation in space and time from cell centers to faces. For 0 ≤ d < D,

Wv,±,d = W n
v +

1

2
(±I −

∆t

h
Ad

v)P±(∆
dWv)

Ad
v = Ad(Wv)

P±(W) =
∑

±λk>0

(lk ·W)rk

Wv,±,d = Wv,±,d +
∆t

2
∇UW · Sn

v

(34)

where λk are eigenvalues of A
d
i , and lk and rk are the corresponding left and right

eigenvectors.

We then extrapolate to the covered faces. Define the direction of the face normal to
be df and d1, d2 to be the directions tangential to the face. The procedure develops
as follows

• We define the associated vofs.

• We form a 2x2 grid of values along a plane h away from the covered face and
bilinearly interpolate to the point where the normal intersects the plane.

• We use the slopes of the solution to extrapolate along the normal to get a
second-order approximation of the solution at the covered face.

9

Which plane is selected is determined by the direction of the normal. If any of these
VoFs does not have a monotone path to the original VoF v, we drop order the order
of interpolation.

If |nf | ≥ |nd1 | and |ndf | ≥ |nd2 |:

v00 =ind−1(ind(v) + sdfedf)

v10 =ind−1(ind(v) + sd1ed1)

v01 =ind−1(ind(v) + sd2ed2)

v11 =ind−1(ind(v) + sd1ed1 + sd2ed2)

W 00 = Wv00,∓,df − sdf∆dfWv00

W 10 = Wv10,∓,df

W 01 = Wv01,∓,df

W 11 = Wv11,∓,df

(35)

We form a bilinear function W (xd1 , xd2) in the plane formed by the four faces at
which the values live:

W (xd1 , xd2) = Axd1 +Bxd2 + Cxd1xd2 +D

A =sd1(W 10 −W 00)

B =sd2(W 01 −W 00)

C =sd1sd2(W 11 −W 00)− (W 10 −W 00)− (W 01 −W 00)

D =W 00

(36)

We then extrapolate to the covered face from the point on the plane where the
normal intersects

W full = W (sd1
|nd1 |

|ndf |
, sd2

|nd2 |

|ndf |
)−∆dfWv00 − sd1

|nd1 |

|ndf |
∆d1Wv10 − sd2

|nd2 |

|ndf |
∆d2Wv01

(37)
Otherwise (assume |nd1 | ≥ |ndf | and |nd1 | ≥ |nd2 |):

v00 =ind−1(ind(v) + sd1ed1)

v10 =ind−1(ind(v) + sd1ed1)− sdfedf

v01 =ind−1(ind(v) + sd1ed1) + sd2ed2

v11 =ind−1(ind(v) + sd1ed1 − sdfedf + sd2ed2

W 00 = Wv00,∓,df

W 10 = Wv10,∓,df

W 01 = Wv01,∓,df

W 11 = Wv11,∓,df

(38)

10

We form a bilinear function W (xd1 , xd2) in the plane formed by the four faces at
which the values live. This is shown in equation 36. We then extrapolate to the
covered face from the point on the plane where the normal intersects

W full = W (sdf
|ndf |

|nd1 |
, sd2

|nd2 |

|nd1 |
)−∆d1Wv00 − sdf

|ndf |

|nd1 |
∆dfWv10 − sd2

|nd2 |

|nd1 |
∆d2Wv01

(39)
In either case,

W covered
v,±,d =

{
W full if all four VoFs exist

W n
v otherwise

(40)

4. Compute estimates of F d suitable for computing 1D flux derivatives ∂F d

∂xd
using a

Riemann solver for the interior, R, and for the boundary, RB.

F 1D
f = R(Wv−(f),+,d,Wv+(f),−,d, d)

| RB(Wv−(f),+,d, (i +
1

2
ed)h, d)

| RB(Wv+(f),−,d, (i +
1

2
ed)h, d)

d = dir(f)

(41)

5. Compute the covered fluxes F 1D,covered

F 1D, covered
v,+,d = R(Wv,+,d,W

covered
v,+,d , d)

F 1D, covered
v,−,d = R(W covered

v,−,d ,Wv,−,d, d)
(42)

6. Compute corrections to Ui,±,d corresponding to one set of transverse derivatives
appropriate to obtain (1, 1, 1) diagonal coupling. This step is only meaningful in
three dimensions. We compute 1D flux differences, and use them to compute
Uv,±,d1,d2 , the d1-edge-centered state partially updated by the effect of derivatives
in the d1, d2 directions.

D1D
d F 1D

v =
1

h
(F̄ 1D

v,+,d − F̄ 1D
v,−,d)

F̄v,±,d =





1
N±,d

(
∑

f∈Fv,±,d

F 1D
f) if Nv,±,d > 0

F 1D, covered
v,±,d otherwise

(43)

Wv,±,d1,d2 = Wv,±,d1 −
∆t

3
∇UW (D1D

d2
F 1D)v (44)

11

We then extrapolate to covered faces with the procedure described above using
W·,±,d1,d2 to form W

covered,d
·,±,d1,d2

and compute an estimate to the fluxes:

Ff ,d1,d2 = R(Wv−(f),+,d1,d2 ,Wv+(f),−,d1,d2 , d1)

| RB(Wv−(f),+,d1,d2 , (i +
1

2
ed)h, d1)

| RB(Wv+(f),−,d1,d2 , (i +
1

2
ed)h, d1)

d =dir(f)

F covered
v,−,d1,d2

=R(W covered
v,−,d1,d2,Wv,−,d1,d2 , d1)

F covered
v,+,d1,d2

=R(Wv,+,d1,d2,W
covered
v,+,d1,d2

, d1)

(45)

7. Compute final corrections to Wi,±,d due to the final transverse derivatives. We
compute the 2D transverse derivatives and use them to correct the extrapolated
values of U and obtain time-centered fluxes at centers of Cartesian faces. In three
dimensions, this takes the form:

Dd,⊥Fv =
1

h
(F̄v,+,d1,d2 − F̄v,−,d1,d2 + F̄v,+,d2,d1 − F̄v,−,d2,d1)

F̄v,±,d′ ,d′′ =





1
N

v,±,d
′

∑
f∈F

v,±,d
′
Ff ,±,d′ ,d′′ if Nv,±,d′ > 0

F covered

v,±,d′ ,d′′
otherwise

d 6= d1 6= d2 0 ≤ d, d1, d2 < D

W
n+ 1

2
v,±,d =Wv,±,d −

∆t

2
∇UW (Dd,⊥Fv)

(46)

We then extrapolate to covered faces with the procedure described above using

W
n+ 1

2
·,±,d to form W

n+ 1
2
,covered,d

·,±,d .

8. Compute the flux estimate.

F
n+ 1

2
f = R(W

n+ 1
2

v−(f),+,d
,W

n+ 1
2

v+(f),−,d, d)

| RB(W
n+ 1

2

v−(f),+,d
, (i +

1

2
ed)h, d)

| RB(W
n+ 1

2

v+(f),−,d, (i +
1

2
ed)h, d)

F
n+ 1

2
,covered

v,−,d =R(W
n+ 1

2
,covered

v,+,d ,W
n+ 1

2
v,−,d, d)

F
n+ 1

2
,covered

v,+,d =R(W
n+ 1

2
v,+,d,W

n+ 1
2
,covered

v,+,d , d)

(47)

9. Modify the flux with artificial viscosity where the flow is compressive.

12

5.3 Modificiations for R-Z Computations

For R-Z calculations, we make some adjustments to the algorithm. Specifically, we sep-
arate the radial pressure force as a separate flux. This makes free-stream preservation in
the radial direction easier to achieve. For this section, we will confine ourselves to the
compressible Euler equations.

5.3.1 Equations of Motion

The compressible Euler equations in R-Z coordinates are given by

∂U

∂t
+

1

r

∂(rF r)

∂r
+

1

r

∂(rF z)

∂z
+

∂H

∂r
+

∂H

∂z
= 0 (48)

where

U =(ρ, ρur, ρuz, ρE)T

F r =(ρur, ρu
2
r, ρuruz, ρur(E + p))T

F z =(ρuz, ρuruz, ρu
2
z, ρuz(E + p))T

H =(0, p, p, 0)T

(49)

5.3.2 Flux Divergence Approximations

In section 4, we describe our solution update strategy and this remains largely unchanged.
Our update still takes the form of equation 16 and redistribution still takes the form of
equation 18. The definitions of the divergence approximations do change, however. The
volume of a full cell ∆Vj is given by

∆Vj = (j +
1

2
)h3 (50)

where (i, j) = ind−1(v). Define κvolv to be the real volume of the cell that the VoF
occupies.

κvolv =
1

∆V

∫

∆v

rdrdz =
1

∆V

∫

∂∆v

r2

2
nrdl (51)

κvolv =
h

2∆V
((αr2)f(v,+,r) − (αr2)f(v,−,r) − αB r̄

2
δvn

r) (52)

The conservative divergence of the flux in RZ is given by

(D · ~F)cv =
h

∆V κvolv

((rF̄ rα)f(v,+,r) − (rF̄ rα)f(v,−,r)

+(r̄F̄ zα)f(v,+,z) − (r̄F̄ zα)f(v,−,z))

13

(
∂H

∂r

)c

=
1

κvh2

∫
∂H

∂r
drdz =

1

κvh2

∫
Hnrdl

(
∂H

∂z

)c

=
1

κvh2

∫
∂H

∂z
drdz =

1

κvh2

∫
Hnzdl

We always deal with these divergences in a form multiplied by the volume fraction κ.

κv(D · ~F)cv =
hκv

∆V κvolv

((rF̄ rα)f(v,+,r) − (rF̄ rα)f(v,−,r)

+(r̄F̄ zα)f(v,+,z) − (r̄F̄ zα)f(v,−,z))

κv

(
∂H

∂r

)c

=
1

h2

∫
Hnrdl =

1

h
((Hα)f(v,+,r) − (Hα)f(v,−,r))

κv

(
∂H

∂z

)c

=
1

h2

∫
Hnzdl =

1

h
((Hα)f(v,+,z) − (Hα)f(v,−,z))

where F̄ has been interpolated to face centroids where α denotes the ordinary area frac-
tion. The nonconservative divergence of the flux in RZ is given by

(D · ~F)ncv =
1

hrv

((rF r)f(v,+,r) − (rF r)f(v,−,r))

+
1

h
(F z

f(v,+,z) − F z
f(v,−,z))

(
∂H

∂r

)nc

=
1

h
(Hf(v,+,r) −Hf(v,−,r))

(
∂H

∂z

)nc

=
1

h
(Hf(v,+,z) −Hf(v,−,z))

5.3.3 Primitive Variable Form of the Equations

In the predictor step, we use the nonconservative form of the equations of motion. See
Courant and Friedrichs [CF48] for derivations.

∂W

∂t
+ Ar ∂W

∂r
+ Az ∂W

∂z
= S (53)

where

W =(ρ, ur, uz, p)
T

S =
(
−ρ

ur

r
, 0, 0,−ρc2

ur

r

)T

14

Ar =




ur ρ 0 0
0 ur 0 1

ρ

0 0 ur 0
0 ρc2 0 ur




Ar =




uz ρ 0 0
0 uz 0 0
0 0 uz

1
ρ

0 0 ρc2 uz




5.3.4 Flux Registers

Refluxing is the balancing the fluxes at coarse-fine interfaces so the coarse side of the
interface is using the same flux as the integral of the fine fluxes over the same area. In
this way, we maintain strong mass conservation at coarse-fine interfaces. As shown in
equation, 5.3.2, the conservative divergence in cylindrical coordinates is has a differenct
form than in Cartesian coordinates. It is therefore necessary to describe the refluxing
operation specifically for cylindrical coordinates.
Let ~F comp = {~F f , ~F c,valid} be a two-level composite vector field. We want to define

a composite divergence Dcomp(~F f , ~F c,valid)v, for v ∈ V c
valid. We do this by extending

F c,valid to the faces adjacent to v ∈ V c
valid, but are covered by F

f
valid.

< F f
z >fc

=

(
κvc

κvolvc
∆Vvc

)(
h2

(nref)(D−1)

) ∑

f∈C−1
nref (fc)

(r̄α)f (F̄
z + H̄)f

< F f
r >fc

=

(
κvc

κvolvc
∆Vvc

)(
h2

(nref)(D−1)

) ∑

f∈C−1
nref

(fc)

(rα)f (F
r +H)f

F c
r,fc

=

(
κvc

κvolvc
∆Vvc

)
(h2(rα)fc

)(F r +H)fc

F c
z,fc

=

(
κvc

κvolvc
∆Vvc

)
(h2(r̄α)fc

)(F̄ z + H̄)fc

f c ∈ ind
−1(i +

1

2
ed), i +

1

2
ed ∈ ζ

f
d,+ ∪ ζ

f
d,−

ζ
f
d,± = {i±

1

2
ed : i± ed ∈ Ωc

valid, i ∈ Cnref (Ω
f)}

The VoF vc is the coarse volume that is adjacent to the coarse-fine interface and rvc
is

the radius of its cell center. Then we can define (D · ~F)v,v ∈ V
c
valid, using the expression

above, with F̃f =< F
f
d > on faces covered by F f . We can express the composite

divergence in terms of a level divergence, plus a correction. We define a flux register δ ~F f ,

15

associated with the fine level

δ ~F f = (δF f
0,...δF

f
D−1)

δF
f
d : ind

−1(ζfd,+ ∪ ζ
f
d,−)→ Rm

If ~F c is any coarse level vector field that extends ~F c,valid, i.e. F c
d = F

c,valid
d on F c,d

valid then
for v ∈ Vc

valid

Dcomp(~F f , ~F c,valid)v = (D~F c)v +DR(δ ~F
c)v (54)

Here δ ~F f is a flux register, set to be

δF
f
d =< F

f
d > −F c

d on ind
−1(ζcd,+ ∪ ζcd,−) (55)

DR is the reflux divergence operator. For valid coarse vofs adjacent to Ωf it is given by

κv(DRδ ~F
f)v =

D−1∑

d=0

(
∑

f :v=v+(f)

δF
f
d,f −

∑

f :v=v−(f)

δF
f
d,f) (56)

For the remaining vofs in Vf
valid,

(DRδ ~F
f) ≡ 0 (57)

We then add the reflux divergence to adjust the coarse solution U c to preserve conserva-
tion.

U c
v += κv(DR(δF))v (58)

5.4 Artifical Viscosity

The artificial viscosity coefficient is K0, the velocity is ~u and d = dir(f).

(D~u)f = (udv+(f) − udv−(f)) +
∑

d
′ 6=d

1

2
(∆d

′

ud
′

v+(f) +∆d
′

ud
′

v−(f))

Kf = K0 max(−(D~u)f , 0)

F
n+ 1

2
f = F

n+ 1
2

f −Kf (U
n
v+(f) − Un

v−(f))

F covered
v,±,d = F covered

v,±,d −Kf (U
n
v+(f) − Un

v−(f))

We modify the covered face with the same divergence used in the adjacent uncovered
face.

F covered
v,±,d =F covered

v,±,d −Kf (U
n
v+(f) − Un

v−(f))

f =f(v,∓, d)

This has the effect of negating the effect of artificial viscosity on the non-conservative
divergence of the flux at irregular cells. We describe later that the solid wall boundary
condition at the embedded boundary is also modified with artificial viscosity.

16

6 Slope Calculation

We will use the 4th order slope calculation in Colella and Glaz [CG85] combined with
characteristic limiting.

∆dWv = ζv ∆̃dWv

∆̃dWv = ∆vL(∆BWv,∆
LWv,∆

RWv) | ∆
d
2Wv | ∆

d
2Wv

∆d
2Wv = ∆vL(∆CWv,∆

LWv,∆
RWv) | ∆

V LLWv | ∆
V LRWv

∆BWv =
2

3
((W −

1

4
∆d

2W)<<ed)v − ((W +
1

4
∆d

2W)<<−ed)v)

∆CWv =
1

2
((W n<<ed)v − (W n<<−ed)v)

∆LWv = W n
v − (W n<<−ed)v

∆RWv = (W n<<ed)v −W n
v

∆3LWv =
1

2
(3W n

v − 4(W n<<−ed)v + (W n<<−2ed)v)

∆3RWv =
1

2
(−3W n

v + 4(W n<<ed)v − (W n<<2ed)v)

∆V LLWv =

{
min(∆3LWv,∆

L
v) if ∆3LWv ·∆

LWv > 0

0 otherwise

∆V LRWv =

{
min(∆3RWv,∆

R
v) if ∆3RWv ·∆

RWv > 0

0 otherwise

At domain boundaries, ∆LWv and ∆RWv may be overwritten by the application. There
are two versions of the van Leer limiter ∆vL(δWC , δWL, δWR) that are commonly used.
One is to apply a limiter to the differences in characteristic variables.

1. Compute expansion of one-sided and centered differences in characteristic variables.

αk
L = lk · δWL (59)

αk
R = lk · δWR (60)

αk
C = lk · δW (61)

2. Apply van Leer limiter

αk =

{
min(2 |αk

L |, 2 |α
k
R |, |α

k
C |) if αk

L · α
k
R > 0

0 otherwise
(62)

3. ∆vL =
∑

k α
krk

17

Here, lk = lk(W n
i) and r

k = rk(W n
i).

For a variety of problems, it suffices to apply the van Leer limiter componentwise to
the differences. Formally, this can be obtain from the more general case above by taking
the matrices of left and right eigenvectors to be the identity.
Finally, we give the algorithm for computing the flattening coefficient ζi. We assume

that there is a quantity corresponding to the pressure in gas dynamics (denoted here
as p) which can act as a steepness indicator, and a quantity corresponding to the bulk
modulus (denoted here asK, given as γp in a gas), that can be used to non-dimensionalize
differences in p.

ζv =

{
min
0≤d<D

ζdv if
∑D−1

d=0 ∆d
1u

d
v < 0

1 otherwise
(63)

ζdv = min3(ζ̃
d, d)v

ζ̃dv = η(∆d
1pv, ∆

d
2pv, min3(K, d)v)

∆d
1pv = ∆Cpv | ∆

Lpv | ∆
Rpv

∆d
2pv = (∆d

1p<<ed)v + (∆d
1p<<−ed)v | 2∆

d
1pv | 2∆

d
1pv

The functions min3 and ζ are given below.

min3(q, d)v = min((q<<ed)v, qv, (q<<−ed)v) | minqv, (q<<−ed)v) | min(q<<ed)v, qv)

ζ(δp1, δp2, p0) =





0 if |δp1|
p0

> d and |δp1|
|δp2|

> r1

1−
|δp1|
|δp2|

−r0

r1−r0
if |δp1|

p0
> d and r1 ≥

|δp1|
|δp2|

> r0

1 otherwise

r0 = 0.75, r1 = 0.85, d = 0.33

(64)

Note that min3 is not the minimim over all available VoFs but involves the minimum of
shifted VoFs which includes an averaging operation.

7 Computing fluxes at the irregular boundary

The flux at the embedded boundary is centered at the centroid of the boundary x̄. We
extrapolate the primitive solution in space from the cell center. We then transform to the
conservative solution and extrapolate in time using the stable, non-conservative estimate

18

of the flux divergence described in equation 14.

Wv,B = W n
v +

D−1∑

d=0

(x̄d∆
dW n

v) (65)

U
n+ 1

2
v,B = U(Wv,B)−

∆t

2
(D · ~F)NC (66)

F
n+ 1

2
v,B = RB(U

n+ 1
2

v,B ,nB
v) (67)

If we are using solid-wall boundary condtions at the irregular boundary, we calculate an
approximation of the divergence of the velocity at the irregular cell D(~u)v and use it to
modify the flux to be consistent with artificial viscosity. The d-direction momentum flux
at the irregular boundary is given by −prnd where pr is the pressure to emerge from the
Riemann solution in equation 67. For artificial viscosity, we modify this flux as follows.

(D~u)v =
D−1∑

d
′=0

∆d
′

ud
′

v

pr = pr − 2K0 max(−(D~u)v, 0)~u · n̂

8 Class Hierarchy

The principal EBAMRGodunov classes follow.

• EBAMRGodunov, the AMRLevel-derived class which is driven by the AMR class.

• EBLevelGodunov, a class owned by AMRGodunov. EBLevelGodunov advances the
solution on a level and can exist outside the context of an AMR hierarchy. This
class makes possible Richardson extrapolation for error estimation.

• EBPatchGodunov, is a base class which encapsulates the operations required to
advance a solution on a single patch.

• EBPhysIBC is a base class which encapsulates initial conditions and flux-based
boundary condtions.

8.1 Class EBAMRGodunov

EBAMRGodunov is the AMRLevel-derived class with which the AMR class will directly inter-
act. Its user interface is therefore constrained by the AMRLevel interface. The important
data members of the EBAMRGodunov class are as follows.

• LevelData<EBCellFAB> m_state_old, m_state_new;

The state data at old and new times. Both need to be kept because subcycling in
time requires temporal interpolation.

19

• Real m_cfl, m_dx;

CFL number and grid spacing for this level.

• EBPWLFineInterp m_fine_interp;

Interpolation operator for refining data during regridding that were previously only
covered by coarser data.

• EBCoarseAverage m_coarse_average;

This is the averaging operator which replaces data on coarser levels with the average
of the data on this level where they coincide in space.

• RefCountedPtr<EBPhysIBC> m_phys_ibc_ptr;

This boundary condition operator provides flux-based boundary data at domain
boundaries and also provides initial conditions.

The EBAMRGodunov implementation of the AMRLevel currently does the following for
each of the important interface functions.

• Real EBAMRGodunov::advance()

This function advances the conservative state by one time step. It calls the
EBLevelGodunov::step function. The timestep returned by that function is stored
in member data.

• void EBAMRGodunov::postTimeStep()

This function calls refluxing from the next finer level and averages its solution to
the next finer level.

• void regrid(const Vector<Box>& a_new_grids)

This function changes the union of rectangles over which the data is defined. At
places where the two sets of rectangles intersect, the data is copied from the previous
set of rectangles. At places where there was only data from the next coarser level,
piecewise linear interpolation is used to fill the data.

• void initialData()

In this function the initial state is filled by calling m_phys_ibc_ptr->initialize.

• void computeDt()

This function returns the timestep stored during the advance() call.

• void computeInitialDt()

This function calculates the time step using the maximum wavespeed returned by
a EBLevelGodunov::getMaxWaveSpeed call. Define the maximum wavespeed to

20

be w and the initial timestep multiplier to be K and the grid spacing at this level
to be h,

∆t =
Kh

w
. (68)

• DisjointBoxLayout loadBalance(const Vector<Box>& a_grids)

Calls the Chombo load balancer to create the returned layout.

8.2 Class EBLevelGodunov

EBLevelGodunov is a class owned by AMRGodunov. EBLevelGodunov advances the so-
lution on a level and can exist outside the context of an AMR hierarchy. This class makes
possible Richardson extrapolation for error estimation. The important functions of the
public interface of EBLevelGodunov follow.

• void define(const DisjointBoxLayout& a_thisDBL,

const DisjointBoxLayout& a_coarDBL,

const EBISLayout& a_thisEBISL,

const EBISLayout& a_coarEBISL,

const RedistSTencil& a_redStencil,

const Box& a_DProblem,

const int& a_numGhost,

const int& a_nRefine,

const Real& a_dx,

const EBPatchGodunov* const a_integrator,

const bool& a_hasCoarser,

const bool& a_hasFiner);

Define the internal data structures. For the coarsest level, an empty DisjointBoxLay-
out is passed in for coaserDisjointBoxLayout.

– a_thisDBL, a_coarDBL The layouts at this level and the next coarser level.
For the coarsest level, an empty DisjointBoxLayout is passed in for coarDBL.

– a_DProblem, a_dx The problem domain and grid spacing at this level.

– a_nRefine The refinement ratio between this level and the next coarser level.

– a_numGhost The number of ghost cells (assumed to be isotropic) required to
advance the solution.

– a_bc Boundary conditions and initial conditions are encapsulated in this object.

• Real step(LevelData<EBCellFAB>& a_U,

LevelData<BaseIVFAB<Real> >& a_massDiff,

EBFluxRegister& a_coarFluxRegister,

EBFluxRegister& a_fineFluxRegister

const LevelData<EBCellFAB>& a_UCoarseOld,

21

const LevelData<EBCellFAB>& a_UCoarseNew,

const Real& a_time,

const Real& a_TCold,

const Real& a_TCNew,

const Real& a_dt);

Advance the solution at this timeStep for one time step.

– a_UCoarseOld, a_UCoarseNew The solution at the next coarser level at the
old and new coarse times.

– a_time, a_TCold, a_TCNew The time of this solution (before the advance)
and the old and new coarse solution times.

– a_dt The time step at this level.

– a_U The solution at this level.

– a_massDiff Redistribution mass.

– a_coarFluxRegister, a_fineFluxRegisters The flux registers between
this level and the adjacent levels.

• Real getMaxWaveSpeed(const LevelData<EBCellFAB>& a_state);

Return the maximum wave speed of input a_state for purposes of limiting the time
step.

8.3 Class EBPatchGodunov

The base class EBPatchGodunov provides a skeleton for the application-dependent
pieces of a second-order unsplit Godunov method. The virtual functions are called by
EBLevelGodunov, which manages the overall assembly of the second-order unsplit fluxes.
As part of EBPatchGodunov, we provide some member functions (slope, flattening), that
we expect to be useful across applications, but require either virtual functions or parameter
information by the user.
There are three types of grid variables that appear in the unsplit Godunov method in

section (??): conserved quantities, primitive variables, and fluxes, denoted below by U,
q, F, respectively. It is often convenient to have the number of components for primitive
variables and for fluxes exceed that for conserved quantities. In the case of primitive
variables, redundant quantities are carried that parameterize the equation of state in order
to avoid multiple calls to that function. In the case of fluxes, it is often convenient to split
the flux for some variables into multiple components, e.g., dividing the momentum flux
into advective and pressure terms. The API given here provides the flexibility to support
these various options.
Construction Methods:

• void setPhysIBC(RefCountedPtr<EBPhysIBC> a_bc)

Set the boundary condtion pointer of the integrator.

22

• virtual void define(

const Box& a_domain,

const Real& a_dx);

Set the domain variables for this level.

• virtual EBPatchGodunov* new_patchGodunov = 0;

Factory method. Return pointer to new PatchGodunov object with its boundary
condtions defined.

EBLevelGodunov API: (Translation: these are the only things that actually get called by
EBLevelGodunov.

• virtual void

regularUpdate(EBCellFAB& a_consState,

EBFluxFAB& a_flux,

BaseIVFAB<Real>& a_nonConservativeDivergence,

const EBCellFAB& a_source,

const Box& a_box);

Update the state using flux difference that ignores EB. Store fluxes used in this
update Store non-conservative divergence. Flux coming out of htis this should exist
at cell face centers.

• interpolateFluxToCentroids(BaseIFFAB<Real> a_centroidFlux[SpaceDim],

const BaseIFFAB<Real>* const a_fluxInterpolant[SpaceDim],

const IntVectSet& a_irregIVS);

Interpolates cell-face centered fluxes to centroids over irregular cells. Flux going
into this should exist at cell face centers.

• virtual void

irregularUpdate(EBCellFAB& a_consState,

Real& a_maxWaveSpeed,

BaseIVFAB<Real>& a_massDiff,

const BaseIFFAB<Real> a_centroidFlux[SpaceDim],

const BaseIVFAB<Real>& a_nonConservativeDivergence,

const Box& a_box,

const IntVectSet& a_ivs);

Update the state at irregular VoFs and compute mass difference and the maximum
wave speed over the entire box. Flux going into this should exist at VoF centroids.

• virtual Real getMaxWaveSpeed(

const EBCellFAB& a_U,

const Box& a_box)= 0;

Return the maximum wave speed on over this patch.

23

• void setValidBox(const Box& a_validBox,

const EBISBox& a_ebisbox,

const Real& a_time,

const Real& a_dt);

Set the valid box of the patch.

Virtual interface:

• virtual void consToPrim(EBCellFAB& a_primState,

const EBCellFAB& a_conState) = 0;

Compute the primitive state given the conserved state. Wi = W (Ui).

• virtual void incrementWithSource(

EBCellFAB& a_primState,

const EBCellFAB& a_source,

const Real& a_scale,

const Box& a_box) = 0;

Increment the primitive variables by the source term, as in (34). a_scale = 0.5*dt.

• virtual void normalPred(EBCellFAB& a_qlo,

EBCellFAB& a_qhi,

const EBCellFAB& a_q,

const EBCellFAB& a_dq,

const Real& a_scale,

const int& a_dir,

const Box& a_box) = 0;

Extrapolate in the low and high direction from q, as in (34). A default implemen-
tation is provided which assumes the existence of the virtual functions limit.

• virtual void riemann(EBFaceFAB& a_flux,

const EBCellFAB& a_qleft,

const EBCellFAB& a_qright,

const int& a_dir,

const Box& a_box) = 0;

virtual void riemann(BaseIVFAB<Real>& a_coveredFlux,

const BaseIVFAB<Real>& a_extendedState,

const EBCellFAB& a_primState,

const IntVecSet& a_coveredFace,

const int& a_dir,

const Side::LoHiSide& a_sd) = 0;

Given input left and right states, compute a suitably-upwinded flux (e.g. by solving
a Riemann problem), as in equattion 41.

• virtual void updateCons(EBCellFAB& a_conState,

24

const EBFaceFAB& a_flux,

const BaseIVFAB<Real>& a_coveredFluxMinu,

const BaseIVFAB<Real>& a_coveredFluxPlus,

const IntVecSet& a_coveredFaceMinu,

const IntVecSet& a_coveredFacePlus,

const int& a_dir,

const Box& a_box,

const Real& a_scale) = 0;

Given the value of the flux, update the conserved quantities and modify in place
the flux for the purpose of passing it to a EBFluxRegister.

consstate_i +=a_scale*(flux_i-1/2 - flux_i+1/2)

.

• virtual void updatePrim(EBCellFAB& a_qminus,

EBCellFAB& a_qplus,

const EBFaceFAB& a_flux,

const BaseIVFAB<Real>& a_coveredFluxMinu,

const BaseIVFAB<Real>& a_coveredFluxPlus,

const IntVecSet& a_coveredFaceMinu,

const IntVecSet& a_coveredFacePlus,

const int& a_dir,

const Box& a_box,

const Real& a_scale) = 0;

Given a_flux, the value of the flux in the direction a_dir, update q_plus, q_minus,
the extrapolated primitive quantities, as in (??,29,30).

primstate_i += a_scale*Grad_W U(flux_i-1/2 - flux_i+1/2)

• virtual void applyLimiter(EBCellFAB& a_dq,

const EBCellFAB& a_dql,

const EBCellFAB& a_dqr,

const int& a_dir,

const Box& a_box) = 0;

Given left and right one-sided undivided differences a_dql,a_dqr, apply van Leer
limiter vL defined in section (6) to a_dq. Called by the default implementation of
EBPatchGodunov::slope.

• virtual int numPrimitives() const = 0;

Returns number of components for primitive variables.

• virtual int numFluxes() const = 0;

Returns number of components for flux variables.

25

• virtual int numConserved() const = 0;

Returns number of components for conserved variables.

• virtual Interval velocityInterval() const = 0;

Returns the interval of component indices in the primitive variable EBCellFAB for
the velocities.

• virtual int pressureIndex() const = 0;

Returns the component index for the pressure. Called only if flattening is used.

• virtual int bulkModulusIndex() const = 0;

Returns the component index for the bulk modulus, used as a normalization to
measure shock strength in flattening. Called only if flattening is used.

• virtual Real artificialViscosityCoefficient() const = 0;

Returns value of artificial viscosity. Called only if artificial viscosity is being used.

Useful member functions:

• void slope(EBCellFAB& a_dq,

const EBCellFAB& a_q,

const EBCellFAB& a_flattening,

int a_dir,

const Box& a_box) const;

Compute the limited slope a_dq of the primitive variables a_q for the components in
the interval a_interval, using the algorithm described in (6). Calls user-supplied
EBPatchGodunov::applyLimiter.

• void getFlattening(const EBCellFAB& a_q);

Computes the flattening coefficient (63) and stores it in the member data m_flatcoef.
Called from EBPatchGodunov::slope, if required.

8.4 Class EBPhysIBC

EBPhysIBC is an interface class owned and used by PatchGodunov through which a user
specifies the initial and boundary of conditions of her particular problem. These bound-
ary conditions are flux-based. EBPhysIBC contains as member data the mesh spacing
(Real a_dx) and the domain of computation (ProblemDomain a_domain). The impor-
tant user functions of EBPhysIBC are as follows.

• virtual void define(const Box& a_domain

const Real& a_dx) = 0;

Define the internals of the class.

26

• virtual EBPhysIBC* new_ebphysIBC() = 0;

Factory method. Return a new EBPhysIBC object.

• virtual void fluxBC(EBFaceFAB& a_flux,

const EBCellFAB& a_Wextrap,

const EBCellFAB& a_Wcenter,

const int& a_dir,

const Side::LoHiSide& a_side,

const Real& a_time) = 0;

Enforce the flux boundary condtion on the boundary of the domain and place the
result in a_flux. The arguments to this function are as follows

– a_flux is the array of the fluxes over the box. This values in the array
that correspond to the boundary faces of the domain are to be replaced with
boundary values.

– a_Wextrap is the extrapolated value of the state’s primitive variables. This
data is cell-centered.

– a_Wcenter is the cell-centered value of the primitive variables at the start of
the time step. This data is cell-centered.

– a_dir, a_side is the direction normal and the side of the domain where the
function will be enforcing boundary condtions.

– a_time is the time at which boundary conditions will be imposed.

• virtual void initialize(LevelData<FArrayBox>& a_conState);

Fill the input with the intial conserved variable data of the problem.

• void

setBndrySlopes(EBCellFAB& a_deltaPrim,

const EBCellFAB& a_primState,

const int& a_dir)

Set the slopes at domain boundaries as described in section 6.

9 Results

We run the Modiano problem for one time step to compute the truncation error of the
operator. The error at a given level of refinement Eh is approximated by

Etrunc =
Uh(t)− U e(t)

t
(69)

27

where Uh(t) is the discrete solution and U e(t) is the exact solution at time t = ∆t. We
run the Modiano problem for a fixed time to compute the solution error of the operator.
The error at a given level of refinement Eh is approximated by

Esoln = Uh(t)− U e(t) (70)

where Uh(t) is the discrete solution and U e(t) is the exact solution at time t. The order
of convergence p is given by

p =
log(|E

2h|
|Eh|

)

log(2)
(71)

References

[CF48] R. Courant and K. O. Friedrichs. Supersonic Flow and Shock Waves. NYU,
New York, NY, 1948.

[CG85] P. Colella and H. M. Glaz. Efficient solution algorithms for the Riemann problem
for real gases. J. Comput. Phys., 59:264, 1985.

[CGL+00] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.
Serafini, and B. Van Straalen. Chombo Software Package for AMR Applications
- Design Document. unpublished, 2000.

[Col90] Phillip Colella. Multidimensional upwind methods for hyperbolic conservation
laws. J. Comput. Phys., 87:171–200, 1990.

[Sal94] Jeff Saltzman. An unsplit 3d upwind method for hyperbolic conservation laws.
J. Comput. Phys., 115:153–168, 1994.

28

Variable Coarse Error Fine Error Order

mass-density 3.127796e-05 1.669137e-05 9.060445e-01
x-momentum 3.292329e-05 1.675957e-05 9.741235e-01
y-momentum 6.766401e-05 3.141857e-05 1.106771e+00
energy-density 1.094807e-04 5.842373e-05 9.060502e-01

Table 1: Truncation error convergence rates using L-0 norm. hf = 1
512
and hc = 2hf ,

D = 2

Variable Coarse Error Fine Error Order

mass-density 7.358933e-08 1.616991e-08 2.186185e+00
x-momentum 7.569344e-08 2.010648e-08 1.912508e+00
y-momentum 1.764416e-07 4.648945e-08 1.924216e+00
energy-density 2.575709e-07 5.659651e-08 2.186185e+00

Table 2: Truncation error convergence rates using L-1 norm. hf = 1
512
and hc = 2hf ,

D = 2

Variable Coarse Error Fine Error Order

mass-density 4.010155e-07 1.164273e-07 1.784228e+00
x-momentum 6.057493e-07 2.402295e-07 1.334308e+00
y-momentum 1.717569e-06 5.992271e-07 1.519193e+00
energy-density 1.403616e-06 4.075112e-07 1.784237e+00

Table 3: Truncation error convergence rates using L-2 norm. hf = 1
512
and hc = 2hf ,

D = 2

Variable Coarse Error Fine Error Order

mass-density 3.769203e-07 7.212809e-08 2.385626e+00
x-momentum 3.427140e-07 7.681266e-08 2.157589e+00
y-momentum 7.501614e-07 1.692840e-07 2.147755e+00
energy-density 1.319233e-06 2.524508e-07 2.385625e+00

Table 4: Solution error convergence rates using L-0 norm. hf = 1
512
and hc = 2hf , D = 2

29

Variable Coarse Error Fine Error Order

mass-density 1.103779e-09 1.855826e-10 2.572317e+00
x-momentum 1.125935e-09 2.356203e-10 2.256588e+00
y-momentum 1.617258e-09 2.371548e-10 2.769649e+00
energy-density 3.863314e-09 6.495531e-10 2.572320e+00

Table 5: Solution error convergence rates using L-1 norm. hf = 1
512
and hc = 2hf , D = 2

Variable Coarse Error Fine Error Order

mass-density 5.553216e-09 1.114919e-09 2.316385e+00
x-momentum 6.038922e-09 1.251264e-09 2.270905e+00
y-momentum 9.515687e-09 2.244841e-09 2.083695e+00
energy-density 1.943688e-08 3.902358e-09 2.316379e+00

Table 6: Solution error convergence rates using L-2 norm. hf = 1
512
and hc = 2hf , D = 2

30

