#include "SPACE.H"
Include dependency graph for BaseFabMacros.H:
This graph shows which files directly or indirectly include this file:
Go to the source code of this file.
Defines | |
#define | CH_SPACEDIM 1 |
#define | ForAllThisPencil(T, b, ns, nc) |
#define | ForAllXBPencil(T, x, b, ns, nc) |
#define | ForAllThisCPencil(T, b, ns, nc) |
#define | ForAllXBNN(T, x, b, ns, nc) |
#define | ForAllXBNNnoindx(T, x, b, ns, nc) |
#define | ForAllXCBNN(T, x, b, ns, nc) |
#define | ForAllThisBNN(T, b, ns, nc) |
#define | ForAllThisCBNN(T, b, ns, nc) |
#define | ForAllThisBNNXC(T, b, ns, nc, x, nss) |
#define | ForAllThisCBNNXC(T, b, ns, nc, x, nss) |
#define | ForAllThisBNNXCBN(T, b, ns, nc, x, bx, nss) |
#define | ForAllThisBNNXCBNYCBN(T, b, ns, nc, x, bx, nsx, y, by, nsy) |
#define | ForAllRevXBNYCBNNN(T, x, bx, nsx, y, by, nsy, nc, ri) |
#define | EndForTX }}}} |
#define | EndFor }}} |
#define | EndForPencil }} |
#define | ForAllXPencil(T, x) ForAllXBPencil(T,x,((x).box()),0,((x).nComp())) |
#define | ForAllX(T, x) ForAllXBNN(T,x,((x).box()),0,((x).nComp())) |
#define | ForAllXC(T, x) ForAllXCBNN(T,x,((x).box()),0,((x).nComp())) |
#define | ForAllXB(T, x, b) ForAllXBNN(T,x,(b),0,(x).nComp()) |
#define | ForAllXBC(T, x, b) ForAllXCBNN(T,x,(b),0,(x).nComp()) |
#define | ForAllThis(T) ForAllThisBNN(T,domain,0,nComp()) |
#define | ForAllThisC(T) ForAllThisCBNN(T,domain,0,nComp()) |
#define | ForAllThisB(T, b) ForAllThisBNN(T,(b),0,nComp()) |
#define | ForAllThisCB(T, b) ForAllThisCBNN(T,(b),0,nComp()) |
#define | ForAllThisNN(T, ns, nc) ForAllThisBNN(T,domain,ns,nc) |
#define | ForAllThisXC(T, x) ForAllThisBNNXC(T,domain,0,nComp(),x,0) |
|
|
|
Value: { \ assert(x.contains(b)); \ assert((ns) >= 0 && (ns) + (nc) <= (x).nComp()); \ const int *_x_plo = (x).loVect(); \ const int *_x_plen = (x).size(); \ const int *_b_lo = (b).loVect(); \ const int *_b_len = (b).size(); \ T* _x_p = (x) .dataPtr(); \ for(int _n = (ns); _n < (ns)+(nc); ++_n) { \ T *_x_pp = _x_p \ + ((_b_lo[0] - _x_plo[0]) \ + _n * _x_plen[0]); \ for(int _i = 0; _i < _b_len[0]; ++_i, ++_x_pp) { \ T &x##R = * _x_pp; |
|
Value: { \ assert((ns) >= 0 && (ns) + (nc) <= nComp()); \ assert((nss) >= 0 && (nss) + (nc) <= (x).nComp()); \ Box _subbox_((x).box()); \ _subbox_ &= box(); \ _subbox_ &= b; \ if(!_subbox_.isEmpty()) { \ const int *_th_plo = loVect(); \ const int *_th_plen = size(); \ const int *_x_plo = (x).loVect(); \ const int *_x_plen = (x).size(); \ const int *_subbox_lo = _subbox_.loVect(); \ const int *_subbox_len = _subbox_.size().getVect(); \ const T* _th_p = dataPtr(ns); \ const T* _x_p = (x).dataPtr(nss); \ for(int _n = 0; _n < (nc); ++_n) { \ int nR = _n; nR += 0; \ const T *_th_pp = _th_p \ + ((_subbox_lo[0] - _th_plo[0]) \ + _n * _th_plen[0]); \ const T *_x_pp = _x_p \ + ((_subbox_lo[0] - _x_plo[0]) \ + _n * _x_plen[0]); \ for(int _i = 0; _i < _subbox_len[0]; ++_i, ++_th_pp) { \ int iR = _i + _subbox_lo[0]; iR += 0; \ const T &thisR = * _th_pp; const T & x##R = _x_pp[_i]; |
|
Value: { \ assert((nsx) >= 0 && (nsx) + (nc) <= (x).nComp()); \ assert((nsy) >= 0 && (nsy) + (nc) <= (y).nComp()); \ assert((x).contains(bx)); \ assert((y).contains(by)); \ assert((bx).sameSize(by)); \ const int *_x_plo = (x).loVect(); \ const int *_x_plen = (x).size(); \ const int *_y_plo = (y).loVect(); \ const int *_y_plen = (y).size(); \ const int *_len = (bx).size().getVect(); \ const int *_bx_lo = (bx).loVect(); \ const int *_by_lo = (by).loVect(); \ T* _x_p = (x).dataPtr(nsx); \ const T* _y_p = (y).dataPtr(nsy); \ for(int _n = 0; _n < (nc); ++_n) { \ int n##x##R = _n + nsx; n##x##R += 0; \ int n##y##R = _n + nsy; n##y##R += 0; \ int _ix = 0; \ T *_x_pp = _x_p \ + ((_bx_lo[0] - _x_plo[0]) + _len[0] - 1 \ + _n * _x_plen[0]); \ const T *_y_pp = _y_p \ + ((_by_lo[0] - _y_plo[0]) \ + _n * _y_plen[0]); \ for(int _i = 0; _i < _len[0]; ++_i, --_ix) { \ T & x##R = _x_pp[_ix]; \ const T & y##R = _y_pp[_i]; |