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Abstract. We present a cell-centered semi-implicit algorithm for solving the equations of
single fluid resistive MHD for block structured adaptive meshes. The unsplit method [1] is
extended for the ideal MHD part, and the diffusive terms are solved implicitly. The resulting
second-order accurate scheme is conservative while preserving the ∇ · B = 0 constraint.
Numerical results from a variety of verification tests are presented.

1. Introduction

A true description of plasma motion must rely on kinetic equations for each plasma species. As
this approach is too costly for simulation of full magnetic fusion devices, a fluid description of
the plasma is often used, which results from taking velocity moments of the kinetic equations
describing a plasma under certain closure assumptions and the assumptions of large collisionality
(see [2] for details). Magnetohydrodynamics, or MHD, is the term given to a single fluid
description of a plasma in which a single velocity and pressure describe both the electrons
and ions. This is distinguised from two-fluid MHD in which electrons and ions retain separate
pressures and velocities. The simplest MHD model is that of ideal MHD, which ignores the
diffusion terms arising from collisions, assuming that these effects are negligible compared with
other terms. When these diffusion terms are retained, the mathematical model is referred to as
single-fluid resistive MHD, which is the primary focus of this paper. While single-fluid resistive
MHD may be considered to be one of the simplest models used to describe plasma dynamics,
it is nonetheless rich in mathematical structure and has been successfully employed to simulate
physics at the device-scale [3, 4]. We note that there have been a number of recent developments
on related models in the literature that are based on further simplifications and/or incorporation
of additional physical processes. An oft-used approximation of the MHD system in the presence
of a strong magnetic field is to constrain the plasma compressibility in the direction perpendicular
to the field. This asymptotic expansion results in simplified sets of modeling equations, and is
generally referred to as reduced MHD. Additional processes that have been modeled are two-
fluid effects including Hall term and electron pressure gradients, under the umbrella of extended
MHD or XMHD [5]. In this paper, we describe a semi-implicit method for single fluid resistive
compressible magnetohydrodynamics (MHD). At the heart of this method is the extension of
Colella’s unsplit algorithm [1] for multidimensional hyperbolic conservation laws and the recent
work of Crockett et al.[6]. The outline of this paper is as follows. We first write the equations for



single fluid resistive MHD, followed by a description of the unsplit algorithm, and the implicit
treatment of the diffusive fluxes. Most of the notation used here is introduced in the Chombo
design document [7].

1.1. Governing Equations

The single-fluid resistive MHD equations couple the equations of hydrodynamics and resistive
Maxwell’s equations, and may be written in conservation form as,
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where the solution vector U ≡ U(xi, t) = {ρ, ρui, Bi, e}T , and the flux vectors Fj(U) and F̃j(U)
are given by
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In the above equations, ρ is the density, ui is the velocity, Bi is the magnetic field, p and T are the
pressure and temperature respectively, and e is the total energy per unit volume of the plasma.
The plasma properties are the resistivity η, the thermal conductivity κ, and the viscosity µ,
which have been normalized, respectively, by a reference resistivity ηR, a reference conductivity
κR, and a reference viscosity µR. The ratio of specific heats is denoted by γ and taken to be
5/3 through out this work. The non-dimensional parameters in the above equations are the
Reynolds number defined as Re ≡ ρ0U0L/µR, the Lundquist number defined as S ≡ µ0U0L/ηR,
and the Prandtl number denoted by Pr, which is the ratio of momentum to thermal diffusivity.
The non-dimensionalization was carried out using the Alfvén speed U0 = B0/

√
µ0ρ0, where

B0, ρ0, and µ0 are the characteristic strength of the Magnetic field, a reference density and
the permeability of free space, respectively, and L, a characteristic length scale. The equations
are closed by the following equation of state e = p

γ−1
+ ρ

2
ukuk + 1

2
BkBk, The stress tensor is

related to the strain as τij = µ
(
∂ui

∂xj
+

∂uj

∂xi

)

− 2

3
µ∂uk

∂xk
δij . For the purposes of this paper, we will

assume that the plasma properties are constant, i.e., the non-dimensional resistivity, viscosity
and thermal conductivity are all unity.

Finally, a consequence of Faraday’s law is that an initially divergence free magnetic field
leads to a divergence free magnetic field for all times corresponding to the lack of observations
of magnetic monopoles in nature. This solenoidal property is expressed as ∇ ·B = 0.

2. Semi-implicit Numerical Method for Resistive MHD

In this section we describe the semi-implicit numerical method for resistive MHD. We adopt
a operator-split approach in the sense that the hyperbolic fluxes are first computed using an
unsplit algorithm followed by an implicit treatment of the diffusive fluxes.



2.1. Unsplit method for hyperbolic fluxes

The method developed here has its origins in Colella [1], Saltzman [8] and Crockett et al.[6]. We
begin by rewriting the equation (1) as follows.

∂U

∂t
+

D−1∑

d=0

∂F d

∂xd
= SD (4)

where, where D is the dimensionality of physical space, and SD is the divergence of the diffusive
fluxes. We define a vector of variables called the “primitive variables” W ≡ W (U). In our

implementation we chose W = {ρ , ui, Bi , ui, p( or pt )}T , where pt = p + 1

2
BkBk is the total

pressure, an alternative to pressure which proves convenient for certain problems. Rewriting the
equations using W in quasilinear form, we get
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∂W d
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D, Ad = ∇UW · ∇UF
d · ∇WU, S′
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Ad is a singular matrix for MHD with an eigenvector degeneracy. It may be desingularized if
a source term proportional to S∇ ·B is included. This is essentially the approach by Powell et
al. [9] in which the desingularized matrix Ad has an additional eigenvalue equal to the advection
speed and corresponds to an extra wave responsible for advecting away the divergence errors.

The unsplit algorithm [1] is essentially a predictor-corrector method in which face-centered
and time-centered primitive variables are predicted, followed by a corrector step in which a
Riemann problem is solved using the predicted values to compute a second order accurate

estimate of the fluxes: F
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2
∆t). The predictor step is further

divided into a normal and a transverse predictor steps. Our algorithm is outlined below.

2.1.1. Algorithm Steps

(i) Transform to primitive variables, and compute slopes ∆dWi in each computational cell,
which are subsequently limited using Van Leer slope limiting.

(ii) Normal Predictor: Compute the effect of the normal derivative terms and the source
term on the extrapolation in space and time from cell centers to faces. In this step we split
the primitive variables as follows
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where Ād
i
is the matrix obtained from Ad

i
after deleting the row and column corresponding

to the normal component of the magnetic field, λk are eigenvalues of Ād
i
, and lk and rk are

the corresponding left and right eigenvectors.



Stone Correction: Crockett et al. [6] recommend the use of a correction called the
“Stone Correction” to the above normal predicted states. This stems from the fact that
in multidimensions the derivative of the normal component of the magnetic field in the
d-direction is not zero. The Stone Correction is given as

W̄i,±,d = W̄i,±,d −
∆t

2

(
∂Bd

∂xd

)

i

aB, (9)

where aB = {0, Bk/ρ, ud1
, ud2

,−(γ − 1)ukBk}T , and dl = mod(d+l, 3); and the term (∂Bd

∂xd
)i

is the derivative of the normal component of the magnetic field in the d-direction, computed
using a standard second-order central difference formula.

(iii) Transverse Predictor: Compute estimates of F d suitable for computing 1D flux

derivatives ∂F d

∂xd using a Riemann solver. The above normal predictor step gives us left
and right states at each cell interface. We employ a seven-wave linearized Riemann solver
to obtain the primitive variables at the cell faces, except the normal component of the
magnetic field,which is taken as the arithmetic mean of the left and right states. The entire
solution vector at i + 1

2
e
d is termed as the solution of the Riemann problem R(., .). The

fluxes are then computed from the primitive variables as,
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In 3D, we compute corrections to Wi,±,d corresponding to one set of transverse derivatives
appropriate to obtain (1, 1, 1) diagonal coupling.
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Furthermore, in 3D, we compute fluxes corresponding to corrections made in the previous
step,
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Compute final corrections to Wi,±,d due to the final transverse derivatives.
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(iv) Compute final estimate of fluxes as follows. First compute the solution to the Riemann
problem using the time-centered predicted states,
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Projection: Using the normal component of the magnetic field at i + 1

2
e
d compute a cell

centered divergence. The following Poisson equation is solved using a multigrid technique
with a Gauss-Seidel Red-Black ordering smoother, and a BiCGStab bottom solver.
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∂xd i

(15)



Project the magnetic field as B
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2.2. Implicit treatment of diffusive fluxes

At the end of the above step, the face-centered time-averaged hyperbolic fluxes have been
obtained. We can update the density because the continuity equation contains no diffusion
terms. The induction equation for the magnetic field is rewritten as

∂Bi

∂t
= LBD(Bn+1

i )−∇ · FH,n+
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2

Bi
(16)

where LB
D ≡ S−1 ∂2
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field components, and act as a source term in the above diffusive update step. Similarly, the
momentum equation is rewritten as
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momentum equations, and ∇·FH,n+
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equation. Note that the ui multiplying ∇ · FH,n+
1

2

ρ is taken as average value of velocities at the
finite volume faces obtained from the last Riemann problem solved in the hyperbolic stage.

We update the momentum and the magnetic field equations before solving the energy
equation, which is rewritten as
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where LT
D ≡ (RePr)−1 γ
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the energy equation. The term ev in the above equation is given by

ρ
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η
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)
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Because the momentum and magnetic fields have been updated, all the terms in ev are known
and taken as the average of the values at time tn and tn+1. Finally the time derivatives of the
kinetic and magnetic energies are determined as a simple backward difference between times tn+1

and tn. Each of the implicit solves of the diffusion terms is expressed as a variable coefficient
Helmholtz equation, which is solved either with a backward Euler, or a Crank-Nicholson or an
implicit Runge-Kutta technique developed by Twizell et al. [10].

2.3. AMR Implementation

We now briefly describe the main issues in implementing the above algorithm using block
structured adaptive meshes using the Chombo framework. Each of the blocks is surrounded
by a layer of guard cells which are filled either by exchanging data from sibling meshes at the
same level or by interlevel interpolation from coarse to fine meshes. In the calculation of the
second order accurate hyperbolic fluxes, linear interpolation is sufficient, while the projection
operation and the diffusive fluxes require a quadratic interpolation. We employ the Berger-Oliger



(a) Linear wave propagation of fast and slow
magnentosonic, and Alfvèn waves at 45o to the
mesh. The solid curves are analytical results
and symbols correspond to numerical results.

(b) L2 error between analytical and computed
results for a slow magnetoscnic wave propagat-
ing at 1o, 41oand 89o to the magnetic field.The
solid line has a 1/N2 slope indicating second
order convergence.

Figure 1. Linear wave propagation verification tests
.

time stepping technique in which the time steps are determined by the CFL condition imposed
by the ideal MHD wave speeds and are computed at the finest level and then appropriately
coarsened by the refinement ratio to determine the larger stable time step for coarser levels.
We maintain flux registers which are used during synchronization when disparate levels reach
the same physical time. For the hyperbolic fluxes the refluxing procedure is explicit in which
coarse level fluxes at coarse fine boundaries are replaced by the sum of the fine level fluxes. The
refluxing procedure for the diffusive fluxes is done implicitly, i.e., it requires a full elliptic solve on
the entire mesh hierarchy. A detailed description of the implicit refluxing procedure is omitted
in the interest of brevity and is similar to the method described in Martin and Colella [11].

3. Numerical Results

In this section we present results from a few verification tests.

3.1. Linear Wave Propagation

This is a test of the purely hyperbolic portion of the MHD system. In this problem, the domain
is defined as the square [0, 2] × [0, 2], having periodic boundary conditions on all sides. The
simulations are initialized with nearly constant initial state, with a small amplitude perturbation
to setup the Alfvén, fast and slow magnetosonic waves moving obliquely at 45◦ to the mesh,
varying the angle between the magnetic field and the wave propagation direction in the interval
[0, π/2]. The results shown in 1 demonstrate that the standard phase plot of MHD wave
propagation is reproduced and that the unsplit upwinding method is second-order accurate.

3.2. MHD Shock Refraction

MHD shock refraction during early stages of the Richtmyer Meshkov instability was examined in
detail by Wheatley et al. [12]. An analytical solution valid in the vicinity of the quintuple point,
where all the nonlinear waves intersect was obtained and compared with the numerical solution.
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Figure 2. Analytical shock and contact angles for MHD shock refraction overlaid on density
contours and By contours from the numerical results. RF and TF are fast shocks, RS is a slow
shock while TS is an intermediate shock, and CD is a contact discontinuity

.

This comparison is reproduced in Figure 2 in which we observe good agreement between the
analytical and the computed solution.

3.3. GEM Reconnection

Magnetic reconnection (MR) refers to the breaking and reconnecting of oppositely directed
magnetic field lines in a plasma. In the process, magnetic field energy is converted to plasma
kinetic and thermal energy. MR occurs in many contexts: for example, in the sawtooth-like
oscillations observed in the operation of a tokamak, and in solar coronal events. In general, in
magnetic reconnection, two regions are distinguished: an outer “inviscid” region and an inner
“resistive” region, whose width scales with η1/2, where the actual breaking and reconnecting of
the magnetic field lines takes place. The initial conditions consist of a perturbed Harris sheet
configuration as described in Brin et al. in [13]. This problem has been extensively studied in the
literature, and because of the existence of the well-known Sweet-Parker scaling [14], we consider
this a good verification test case. The domain of simulation is a 2D box [−12.8, 12.8]× [−6.4, 6.4]
where the characteristic velocity scale is the Alfvén speed. The boundary conditions are periodic
in the x-direction with perfectly conducting wall boundary conditions in the y-direction. In
Figure 3, we plot snapshots of the components of the magnetic field at different times during
the reconnection process. The reconnected flux was quantified and observed to agree with the
single-fluid results presented by Brin et al. [13]. The relative timings shown in Table 1 reveal
that most of the time was spent in the implicit calculation of the diffusive fluxes. The GEM
reconnection problem was repeated in 3D, with large amplitude single mode perturbations in
the z-direction. We observed that the reconnection process quickly transforms to that observed
in 2D simulations (See Figure 4).



Figure 3. Magnetic reconnection in 2D (GEM reconnection challenge problem) at times
t = 0, 22, 152. Left column: Bx with the mesh shown. Right Column: By.

Operation Relative Timing
Hyperbolic Fluxes 14.70%
Parabolic Fluxes (Explicit) 0.15%
Projection 15.74%
Implicit Diffusion 61.82%
Implicit Refluxing 7.35%

Table 1. Relative timings of various operations in the semi-implicit algorithm for the GEM
reconnection problem in 2D.

4. Conclusion

In this paper we presented a semi-implicit algorithm for solving single fluid resistive MHD
equations on block structured adaptive meshes. The algorithm is an operator-split approach in
which the hyperbolic fluxes are calculated with an extension of the Colella unsplit algorithm
to MHD, and the diffusive fluxes are implicitly evaluated. The resulting scheme is conservative
and preserves the solenoidal nature of the magnetic field by projection. The scheme is verified
with test cases of linear wave propagation, MHD shock refraction, and magnetic reconnection.



Figure 4. Magnetic reconnection in 3D. The GEM initial conditions in 2D are perturbed in the
z-direction. The By field is shown at t = 0 on the left and at a later time on the right indicating
an essentially 2D reconnection pattern.
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