
Measurement of AMR Ideal MHD Parallel

Performance

P. Colella

D. F. Martin
N. D. Keen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory

Berkeley, CA

October 13, 2005

The target platform for this benchmark measurement is a machine named Halem
located at GSFC. Halem is the NCCS Compaq AlphaServer SC45 System which consists
of 104 symmetric multiprocessor nodes (4 processors per node). Memory is shared within
a node.

The Fortran compiler used for this was the native Fortran compiler f77 with the -fast
optimization flag. The C++ compiler used was the GNU g++ compiler (version 3.3.1)
with flags -O2 -ftemplate-depth-27.

The benchmark problem for the ideal MHD code is a simple explosion, with initial
conditions U(~x, t) = (ρ, ρu, ρv, ρw, Bx, By, Bz, e):

U(~x, 0) =

{

(ρ1, 0, 0, 0, 0, By, 0, e1) r < r0

(ρ0, 0, 0, 0, 0, By, 0, e0) r ≥ r0,
(1)

where r is the distance from ~x0, the center of the spherical explosion, the energy is given
by e = p

(γ−1)
+ ρ

2
(u2 + v2 + w2) + 1

2
(B2

x
+ B2

y
+ B2

z
), and

~x0 = (0.4, 0.5, 0.6) (2)

r0 = 0.1

ρ0 = 1

p0 = 1

ρ1 = 100

p1 = 10

By = 10

γ = 1.667

A sample input used for the runs (for the 64× 64× 64 case) is presented in Figure 1.
Table 1 shows the two sizes of benchmark problems used including the respective

tagging factor for the undivided gradient of the density, while Table 2 shows the total
number of points updated for each run. In all of the benchmark runs, 20 coarse-level
timesteps are completed.

Problem size Density Tagging
Factor

64x64x64 0.425
128x128x128 0.2125

Table 1: Baseline Problem Data

The parallel performance of the AMR Ideal MHD code is summarized in Table 3. As
we double the linear size of the problem, the computational size of the problem increases
by a factor of 4 in 3-dimensions. The factor of 4 increase (rather than a factor of 8 as one

1

godunov.problem = explosion

Coarsest grid

godunov.num_cells = 64 64 64

Number of steps, final time, and time step

godunov.max_step = 20

godunov.max_time = 100.0

initial conditions

godunov.initial_center = 0.4 0.5 0.6

godunov.initial_size = 0.1

godunov.initial_velocity = 0.0 0.0 0.0

godunov.pressure_jump = 100.0

godunov.density_jump = 10.0

p0, rho0 are ambient pressure, density

godunov.p0 = 1

godunov.rho0 = 1

specify direction, magnitude of magnetic field

godunov.B_direction = 1

godunov.B_magnitude = 10

#gas properties

godunov.gamma = 1.667

godunov.rgas = 1.0

godunov.wmol = 1.0

Turn on some output

godunov.verbosity = 2

Size of the domain’s longest dimension

godunov.domain_length = 1.0

godunov.is_periodic = 1 1 1

Grid refinement

godunov.max_level = 2

For 3D

godunov.ref_ratio = 2 2 2 2 2

Regridding parameters

godunov.regrid_interval = 2 2 2 2 2 2

godunov.tag_buffer_size = 3

godunov.refine_thresh = 0.425

Grid generation parameters

godunov.block_factor = 4

godunov.max_grid_size = 32

godunov.fill_ratio = 0.75

Normal predictor method - PLM or PPM

godunov.normal_predictor = PPM

Slope computation parameters

godunov.use_fourth_order_slopes = 1

godunov.use_prim_limiting = 1

godunov.use_char_limiting = 0

godunov.use_flattening = 0

Artificial viscosity

godunov.use_artificial_viscosity = 0

godunov.artificial_viscosity = 0.1

apply filtering to magnetic field

godunov.filter_BField = 0

Plot file information

godunov.plot_interval = 0

godunov.plot_prefix = explosion.

Checkpoint file information

godunov.checkpoint_interval = -1

CFL multipliers

godunov.cfl = 0.7

godunov.initial_cfl = 0.7

Variable time step parameters

godunov.max_dt_growth = 1.1

godunov.dt_tolerance_factor = 1.1

Figure 1: Input file for 64 × 64 × 64 case

2

Level 64x64x64 128x128x128
0 5242880 41943040
1 4515968 15318848
2 30875648 110459520

totals 40634496 167721408

Table 2: Number of Points Updated Per AMR Level for each Problem Size

might expect in 3d) is a result of the geometry of this problem. Since the refinement is
clustered around the explosion front, it is really the surface area of the front which drives
the problem size rather than a volume. (This does, however, highlight another advantage
from using local refinement for this problem). So, we can compute scaled efficiency by
comparing the run time between two runs which differ by a factor of 2 in base grid size,
and a factor of 4 in number of processors. These are shown in Table 4. As can be seen,
the scaled efficiencies computed range from 0.71 (71%) to 0.81.

Prob size Num Avg Memory Min-Max mem AMR Run
Procs MB MB secs

64x64x64 4 420 408-430 3268
64x64x64 8 332 273-367 742
64x64x64 16 202 139-251 510
64x64x64 32 114 74-199 483

128x128x128 32 359 321-391 913
128x128x128 64 224 196-261 722
128x128x128 128 149 8.5-228 646

Table 3: Current parallel performance of AMR Ideal MHD code for baseline explosion
problem

Base Problem Num Large Problem Large num Scaled
Size Procs Size processors Efficiency

64x64x64 8 128x128x128 32 0.81
16 64 0.71

Table 4: Scaled Efficiencies computed from Table 3

3

