
Software Engineering Plan

P. Colella
B. Van Straalen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

July 28, 2003

Contents

1 Introduction 2
1.1 Purpose . 2
1.2 Background . 2
1.3 Organization and Responsibilities . 3

1.3.1 Project Personnel . 3
1.3.2 Interfacing Groups . 4

2 Statement of Problem 4

3 Technical Approach 5
3.1 Assumptions and Constraints . 5
3.2 Development Environment . 6

3.2.1 Hardware Platforms . 6
3.2.2 Software Platform . 7

3.3 Activities, Tools, and Products . 7
3.3.1 Overview . 7
3.3.2 Design Methodology . 8
3.3.3 Testing Methodology . 9
3.3.4 Software Products and Documentation 13

1

4 Management Approach 15
4.1 Milestones . 15
4.2 Metrics . 19
4.3 Risk Management . 19

5 Product Assurance 21
5.1 Configuration Management . 21

5.1.1 Configuration Control . 21
5.1.2 Accounting . 22
5.1.3 Storage and Handling . 23

5.2 Quality Assurance . 24
5.2.1 Coding Standards . 24
5.2.2 Quality Assurance Activities . 24

1 Introduction

1.1 Purpose

Under this proposal, we will develop a software framework for implementing block-structured
AMR algorithms, based on the Chombo C++ framework for AMR applications developed
at LBNL. There are two components to this activity. The first is the development of
algorithm and software enhancements to the Chombo library to enable the support of two
applications areas in the HPCC ESS project: microgravity and star formation. The second
is the development of a data visualization and analysis package, called ChomboVis, that
will meet the needs of a broad range of ESS users of block-structured AMR.

1.2 Background

The starting point for this work is the Chombo framework for AMR applications [CGM+].
The design approach in Chombo is based on two ideas. The first is that the mathematical
structure of the algorithms maps naturally into a combination of data structures and
operations on those data structures which are embodied in C++ classes. The second
is that the mathematical structure of the algorithms can be naturally factored into a
hierarchy of abstractions, leading to an analogous factorization of the framework into
reusable components, or layers. Functionality within a layer results from a combination
of generic programming and sub-classing. Most of the design of Chombo follows the
work of Gamma et al. [GHJ+95]. Base classes are defined as pure virtual Protocol
classes. Applications interact with the Chombo framework through Template Method
and AbstractFactory design patterns. Most of the process of turning a one-off application
into a reusable package involves factoring out these design patterns from the application.

In the work described here, we use the goal of developing applications codes to solve
specific problems in microgravity and star formation as a focus for extending Chombo.

2

These applications codes will define the requirements for extending the various layers in
the Chombo framework. These requirements include: support for volume-of-fluid dis-
cretizations of problems with moving interfaces; methods for representing the dynamics
of particles suspended in a fluid; and integration with high-performance parallel iterative
solvers for variable-coefficient elliptic problems arising in radiation diffusion and heat con-
duction. These will all be developed in the context of the existing Chombo architecture
that supports AMR for time-dependent problems involving coupled elliptic / parabolic /
hyperbolic partial differential equations, including refinement in time.

We will also deliver tools for performing data analysis and visualization for structured
AMR data, called ChomboVis. ChomboVis is a tool that operates with structured AMR
data in its native form (i.e. it does not flatten the data to a uniform or unstructured
grid representation). This enables a much truer representation than commercial software
and provides a performance gain. Since this approach to data analysis and visualization
is closely tied to the underlying data representation, we will provide a standard API to
I/O for block-structured AMR data, based on the HDF5 library developed at NCSA. This
interface will be based on a framework-neutral method for passing aliases for AMR data
between libraries and languages using opaque handles that is being developed in the AMR
Common Component Architecture Forum provided using the HDF5 library developed at
NCSA. The visualization and analysis package itself will be implemented using public
domain tools: the C++ graphics library VTK and the scripting language Python. The
powerful scripting capabilities in Python will allow us to provide a more general and robust
tool that combines analysis and visualization capabilities.

1.3 Organization and Responsibilities

1.3.1 Project Personnel

Dr. Phillip Colella (PI) Dr. Colella will be providing the overall technical leadership
on the the project. This includes being the lead on the algorithm and software design,
as well as overall project management. He will also serve in the role as algorithm quality
assurance officer for the project.
Brian Van Straalen will be taking the software engineering lead on this project. He will
also serve in the role as software quality assurance officer for the project.
Dr. Daniel Martin has been developing incompressible Navier-Stokes AMR solvers using
the Chombo framework. He will develop the coupling of such solvers to a blob-projection
method for representing particles, and the extension to multi-fluid incompressible flows.
Noel Keen will be primarily responsible for performance and interoperability issues for
the codes being developed here.
Theodore Sternberg will be primarily responsible for the development of the ChomboVis
visualization and analysis tools.

3

1.3.2 Interfacing Groups

Microgravity. Dr. Emily Nelson of the Glenn Research Center and Dr. Mohammed
Kassemi of the National Center for Microgravity Research will be collaborating with the
with the LBNL development team on the design, testing and evaluation of the framework
for the microgravity applications.
Star Formation. Dr. Richard Klein and Professor Christopher McKee of the UC Berkeley
Astronomy Department, will collaborate in the design, evaluation, and validation of the
framework for the star formation applications.
Visualization and Data Analysis. our points of contact for visualization and data
analysis users in the NASA community are given as follows: Dr. Kevin Olson (NASA
GSFC - Paramesh code) and Prof. Tamas Gombosi (U. Michigan).
Interactions between the development and the interfacing groups. As a baseline, all of the
collaborators listed above will be on the Chombo and/or ChomboVis developers’ mailing
list, as appropriate; will have secure access to the CVS repositories at LBNL; and will
be able to submit bug reports using the TTPro bug-tracking software. CVS access will
provide a mechanism for disseminating both code updates and design documents. The
star formation group will have students co-located with the members of the Chombo
development team in office space at LBNL, and will meet formally with the developers
no less than a quarterly basis. Representatives of the Chombo microgravity development
team will also visit NASA Glenn Research Center on a quarterly basis. Finally, members
of the ChomboVis development team will visit the principal stakeholder representatives
listed above as required to assist in installation and training, as well as assisting Paramesh
users at various sites as coordinated by Dr. Olson.

2 Statement of Problem

In the area of multi-phase flows in microgravity environments, we will address the problems
arising in two different regimes: free-surface flows, and flows with a dispersed particulate
phase. In free-surface flows, there are typically two different media separated by an
interface, across which mass and energy may be transferred; in addition, the surface itself
may exert forces on the fluid (surface tension). For both of these classes of systems, the
flows that must be modeled are typically incompressible or low-Mach-number, with strong
viscous effects and time-varying body forces (g-jitter). In the case of a free surface between
two fluids, it is necessary to represent the geometry and dynamics of the free surface itself,
as well as large discontinuous changes in the fluid properties (pressure and density) at the
surface. For dispersed particle systems, large-scale motions of fluid-particle systems are
represented by a collection of point particles moving with the fluid, with the drag coupling
between the fluid and the particles represented as forcing terms in the fluid equations. In
both of the applications discussed here, adaptivity is an essential requirement, with the
maximum resolution required in the neighborhood of the free surface or particles.

In the area of astrophysics, the principal target application is the formation of low-

4

mass stars from magnetized molecular clouds. The models for low mass star formation
include the equations of magnetohydrodynamics in 3-D with ambi-polar diffusion. These
equations must be solved self-consistently with the equations of radiation transport (in the
flux-limited diffusion approximation) and self-gravity. There are also extreme variations
in length scale inherent in collapse (105 in spatial scale and 109 in density) which make
adaptive mesh refinement a critical requirement of the calculation.

3 Technical Approach

3.1 Assumptions and Constraints

The technical assumptions and constraints are best understood in terms of the algorithmic
components out of which we will assemble the complete applications.
Discretization Approach. For all of these problems, the underlying discretization approach
will be based on the predictor-corrector methods in [BCG89, Col90] for solving coupled
hyperbolic / parabolic / elliptic problems. The method is second-order accurate in space
and time, and is based on the use of a higher-order Godunov method for approximating
the hyperbolic terms, although other methods can be used.
Adaptive Mesh Refinement. We will use the extension of this approach to AMR appli-
cations described in [ABC+98, MC00a, PC00]. In this approach, refinement in time is
applied to all of the equations. We perform multilevel synchronization solutions for the
elliptic and parabolic subproblems at times at which the solutions at multiple levels of
refinement coincide, and use a lagged correction from the multilevel solution at the other
intermediate times. This is necessary to maintain uniform localization of the solution error
in the presence of elliptic and parabolic terms, without having to solve equations on the
full AMR hierarchy at every time step at the finest level.
Multiphase Effects. In the microgravity area, we need to be able to represent free bound-
aries, for which PDE’s are being solved on both sides of the boundary, whose location and
shape is changing as a function of time and is computed as part of the solution. We will
use a volume-of-fluid representation of the discretized solution near the boundary. In this
approach, the surface is represented by its intersection with an underlying rectangular grid.
This leads to a natural, finite-volume discretization of the PDE on irregular control vol-
umes adjacent to the boundary. Finally, we will provide both level-set and volume-of-fluid
options for representing the surface itself on the finite difference grid.

To represent particles in an incompressible fluid, we will use a particle-in-cell approach.
In this approach, the particles impose a localized force on the fluid. If the particles are
of sufficiently low mass, one can use a version of this method based on the assumption
that the particles are moving with the fluid [Pes82]. Otherwise, the particles have their
own velocities, and are coupled to the fluid via drag terms. This method is a power-
ful and flexible method for representing a variety of interactions of discrete mechanical
components with a fluid, including forces coming from the interaction of the particles
with one another. We will use a method for interpolating the force on the fluid from the

5

particles developed by Cortez and Minion [CM00], which is based on the method of local
corrections algorithm of Anderson [And86, ABC94]. In this approach, the effective force
on the fluid can be specified independent of the mesh spacing, making it much easier to
apply in an AMR setting.

The algorithmic approach described here leads to a software environment assembled
from the following components:

• Explicit finite difference operators defined on unions of rectangles.

• Operators that implement the coupling between different unions of rectangles in a nested
hierarchy.

• Implicit solvers for well-behaved discretizations of elliptic PDEs defined on unions of
rectangles.

This collection of algorithmic components maps naturally into the following layered
architecture for Chombo.

Layer 1: Classes for representing data and computations on unions of rectangles, including
a mechanism for managing the distribution of rectangular patches across processors in an
SPMD distributed-memory execution model, and an interface to Fortran for obtaining
acceptable uniprocessor performance.

Layer 2: Classes for representing inter-level interactions, such as averaging and inter-
polation, interpolation of coarse-fine boundary conditions, and managing conservation at
coarse-fine boundaries.

Layer 3: Classes that implement algorithms on AMR data, such as the Berger-Oliger
time-stepping algorithm and AMR multigrid.

Layer 4: Implementations of specific applications or classes of applications using these
tools, such as a Berger-Oliger algorithm for hyperbolic conservation laws or for incom-
pressible flow, and AMR multigrid for Poisson’s equation.

Utility Layer: Support for problem setup, I/O, and visualization that leverages off of
existing de-facto standards, such as Chombo I/O, which is built on top of HDF5, and the
ChomboVis visualization tool, built on top of VTK.

These algorithmic and software components will be available for both single phase prob-
lems, as well as in extensions to the numerical representations arising in multiphase flow
problems, i.e. particles and volume-of-fluid methods for free boundaries.

3.2 Development Environment

3.2.1 Hardware Platforms

Day to day development work is performed on 80*86 microprocessor based workstations
running Linux. Parallel development is performed on Halem: Halem is the NCCS Compaq

6

AlphaServer SC45 System and it currently consists of 416 user-available processors. The
halem processors are clustered into 104 symmetric multiprocessor nodes (4 processors per
node). An additional set of 12 nodes is allocated as system and spare nodes. Halem is
a hybrid system in the sense that memory is distributed among nodes, but within a node
memory is shared.

3.2.2 Software Platform

Chombo and ChomboVis are built using the GNU make system and utilize perl for some
code transformation and wrapping functionality.

Chombo consists of a mixture of C++ and Fortran 77 code. We have been regularly
using the GNU C++ and fortran compilers (gcc 2.95.3 and 3.1.1) as well as KAI and Intel
compilers. Our code is ISO C++ standard compliant and is compiled and run regularly
on IBM SP3 with xlC/xlf and Sun CC/f77 platforms.

We utilize MPI for message passing based parallelism. I/O is handled using HDF5
(including advanced parallel I/O capabilities and out-of-core functions).

ChomboVis utilizes Python for it’s main development, with C++ compiled code for
CPU intensive operations. ChomboVis runs independently from the Chombo applications.
Initially, it will run as serial code on workstations. As part of Milestone O4.3, we will
develop a SMP parallel version based on threads.

Portability issues. Chombo applications will run on any Unix platform which for which
there is available standards-compliant C++ and Fortran 77 compilers and ports of MPI
and HDF5. ChomboVis will run on any workstation that supports VTK3.2 and Python. In
particular, although the software development for this project is being carried out on the
specific hardware platforms described above, we are using no platform-specific hardware
or systems features, other that the availability of widely-accepted standard software.

3.3 Activities, Tools, and Products

3.3.1 Overview

We will develop the following code capabilities for the two applications being supported
here.

• Microgravity research. We will extend the incompressible AMR code developed by ANAG
to add two sets of simulation capabilities. One is an interface-tracking method for a
vapor-liquid system with a sharp interface, with surface tension and mass transfer at the
interface. The other is a code that simulates the interaction of the fluid dynamics with
suspended particles. These will require the development of free-boundary elliptic and
hyperbolic AMR solvers, based on the ideas in [BCW91, JC98, MC00b]. The particle
methods will use the existing grid solvers for incompressible flow, coupled to new particle
representations based on the ideas in [CM00].

7

• Star formation. The code for this area will be a self-gravitating MHD code. We will
also provide interoperability with the existing AMR code base, developed jointly at UC
Berkeley and LLNL. In particular, we will provide mechanisms for using the radiation
diffusion solvers developed at LLNL within our framework, and support for calling the
various Chombo solvers from the existing LLNL and UC Berkeley AMR codes.

In the area of visualization and analysis tools, we will develop the following capabilities.

• Visualization tools. ChomboVis will provide a set of tools for representing three-dimensional
time-varying data visually in a workstation environment. These include isosurfaces, con-
tour plots of slices, streamlines and other representations of vector and tensor data,
volume rendering, and the ability to browse floating-point values in spreadsheets. We will
also provide presentation/publication level graphics, with titles and arbitrary labeling, axis
systems, cut away isosurfaces, color bars, and direct postscript output.

• Analysis tools. ChomboVis will be migrated to a Python interpretive system. Structured
AMR data structures will then be mapped to new data structures. The Python interpreter
will then be exposed in a console (much like the interpreter found in Matlab). This will
allow users to define in an interactive session new derived data, which can then be displayed
or saved.

• Support for Terascale data. ChomboVis will provide a variety of mechanisms for ana-
lyzing and visualizing data that exceeds the RAM capacity of a deskside workstation. It
will support out-of-core data manipulation, through the use of HDF5 hyperslab access
technology and the pipeline graphics model that will enable the manipulation and display
of data sets that greatly exceed a processor’s available RAM. ChomboVis will support for
batch processing, providing a capability of non-interactive processing of graphics data,
either for the purpose of generating visualization data, or for applying analysis tools for
data mining. Finally, we will develop an SMP parallel version of ChomboVis based on
multithreading to provide higher-performance within the VTK framework.

It will be possible to use ChomboVis in three distinct modes: interactively with a GUI
for visualization; interactively with a combination of a GUI and the Python command-line
interface, for visualization and analysis; and batch processing of Python scripts (e.g. for
generating animations).

3.3.2 Design Methodology

The Spiral design approach [McC96] has a high degree of schedule visibility. On each run
through a design cycle, a working, running executable program is produced and baseline
performance measures are taken. At the next level of improved functionality, the previous
spiral baseline code is optimized. Each cycle adds a higher level of modeling capabilities.

Initially, each subsystem will compile to its own application (space physics, micrograv-
ity, star formation). After the first design cycle of adding functionality, a sub-system goes

8

through the design work of becoming a package including integrating into the Chombo
build architecture and following our coding standards. Packages have the added require-
ment of interoperability with other packages at the same abstraction level.

For each major increment in capability, a spiral design cycle in the present project
proceeds in two phases.

• In collaboration with the applications stakeholders, we will develop the necessary software
components and integrate them to provide an initial implementation of a new simulation
capability. New applications are benchmarked for physics fidelity, for performance, and for
design space flexibility. These applications are incorporated as software packages in the
structured AMR framework. Distribution is centralized and the new packages are subjected
to the framework software engineering process (regression testing, porting, source code
control, etc.). This step corresponds to an interoperability milestone.

• Performance tuning of the benchmark code is carried out and user feedback is obtained
regarding the physics fidelity and design space flexibility of the code. The the performance
enhancements and other improvements addressing the deficiencies identified in the pro-
cess are migrated to the framework. In addition, appropriate reusable components from
the package are factored out and moved into lower layers to increase their reuse. This
corresponds to code improvement milestones.

At the beginning of each design phase, we will also evaluate user feedback regarding
the capabilities developed in previous design cycles, and schedule framework improvements
to those capabilities as appropriate. As discussed above, the pricipal stakeholders will have
continuous access to the latest versions of the code, and will be able to provide continuous
feedback via access to TTPro.

3.3.3 Testing Methodology

There are three types of testing that are appropriate for the kinds of scientific software
under development here.

• Unit Testing. Unit tests are written for individual classes in Layers 1-3 and and
the Utility Layer of the Chombo software architecture. They are designed to test
that the class is implemented as specified in the documentation.

• Verification Testing. These tests are written for solver and application classes
developed in Chombo. They test whether the algorithm is implemented as speci-
fied in the algorithm design documentation. Typical verification tests include grid
convergence studies for both truncation error and solution error, conservation and
freestream-preservation testing, and checks of independence of the computed solu-
tion on the number of processors used.

9

• Validation Testing. These tests are written for applications classes developed in
Chombo, They are intended to test the fidelity of integrated simulation capabilities
on realistic examples of stakeholder applications. Validation testing will be per-
formed primarily by our applications stakeholders, in close collaboration with the
development team. Such testing is performed after interoperability milestones are
met, but prior to the release of software under the code improvement milestones.

In standard software engineering terms, our verification and validation testing corre-
sponds to system testing. Due to the small size of the development team, integration
testing is not an issue.

In what follows below, we give detailed examples of our testing process in Chombo
and ChomboVis. However, these examples are not exhaustive, and do not discuss in detail
the specific tests for the new software being developed. The specification of these tests
is a substantial undertaking, and constitute deliverables in the milestones given below.
Testing for Chombo
Each design unit in Chombo infrastructure is accompanied by a set of unit tests. Most
unit tests are specific to a particular C++ class. For instance for class IntVectSet, a small
sample of the 700 lines of unit test code for this class:

Chombo/lib/test/BoxTools/testIntVectSet.cpp

IntVectSet ivs;
IntVect a(-1*IntVect::Unit), b(0*IntVect::Unit);
ivs |= a;
if(!ivs.contains(a))

{ cout << indent << pgmname
<< ": failed -1 -1 -1 add test"
<< endl;

eekflag = true;
}

if(ivs.numPts() != 1)
{

cout << indent << pgmname
<< ": failed single IntVect count test"
<< endl;

eekflag = true;
}

All unit tests have a return code of zero on success. They are all run by the makefile
target “tests” in the configuration of the code that a user is using:

>make tests DIM=3 DEBUG=FALSE

>make tests DIM=2

.

.

.

10

Regression Testing
The tests are run on an array of machines and compiler settings and configurations

by another set of Perl scripts that catalog the failures and monitor return codes and
run-times. Typical output for a given machine looks as follows:

date=Tue Jun 11 14:52:32 PDT 2002
unamea=Linux ford.lbl.gov 2.4.7-10 #1 Thu Sep 6 16:46:36 EDT 2001 i686 unknown
arch=Linux
compiling in serial
CATFISH_DIR=/export/users/noel/catfish

1 2D dbg0 p0 icc g77 CL=11 24(0) EXB=1 EXR=11111111111111111111111111 89.8%
2 3D dbg0 p0 icc g77 CL=11 24(0) EXB=1 EXR=11111111111111111111111111 91.3%
3 2D dbg1 p0 icc g77 CL=11 24(0) EXB=1 EXR=1111111111111111 94.3%
4 3D dbg1 p0 icc g77 CL=11 24(0) EXB=1 EXR=1111111111111111 90.1%
5 2D dbg1 p0 icc pgf77 CL=11 24(0) EXB=1 EXR=1111111111111111 94.5%
6 3D dbg1 p0 icc pgf77 CL=11 24(0) EXB=1 EXR=1111111111111111 98.2%

Build01 dim=2 debug=0 mpi=0
cxx= icc 6.0 cfl=-O3 -ip -unroll -I/opt/intel/compiler60/ia32/include
fc = g77 2.95.3 ffl=-O2 -malign-double -funroll-loops -fno-second-underscore

compile time cpu utilization
lib build OK=1 232.008166 91.27%
test build OK=1 162.092177 93.11%
example build OK=1 427.923115 95.14%
Number of tests compiled: 24 (0 had issues)

Runs: time(cpus)
poissonSolve t.AMRPoisson.testgrids.2d OK=1 3.414
poissonSolve t.AMRPoisson.2d OK=1 2.719
poissonSolve t.AMRPoisson.2comp.2d OK=1 3.943
amrGodunovSplit t.AMRGodunovSplit.wave2d OK=1 1.987
amrGodunovSplit t.AMRGodunovSplit.ramp2d OK=1 5.741
amrGodunovSplit t.AMRGodunovSplit.explosion2d OK=1 4.061
amrGodunovUnsplit t.AMRGodunovUnsplit.wave2d OK=1 0.253
amrGodunovUnsplit t.AMRGodunovUnsplit.ramp2d OK=1 1.468
ns t.ns2d.ABCHW.64 OK=1 8.500
ns t.ns2d.ABCHW.64-128 OK=1 3.961
heat OK=1 0.060
heat OK=1 0.043
heat OK=1 0.061
amrio OK=1 0.083
ugio OK=1 0.034
richardsonExtrap OK=1 0.187
poissonSolve b.AMRPoisson.testgrids.2d OK=1 27.220

11

poissonSolve b.AMRPoisson.2d OK=1 17.275
poissonSolve b.AMRPoisson.2comp.2d OK=1 31.501
amrGodunovSplit b.AMRGodunovSplit.wave2d OK=1 13.311
amrGodunovSplit b.AMRGodunovSplit.ramp2d OK=1 25.941
amrGodunovSplit b.AMRGodunovSplit.explosion2d OK=1 56.354
amrGodunovUnsplit b.AMRGodunovUnsplit.wave2d OK=1 9.547
amrGodunovUnsplit b.AMRGodunovUnsplit.ramp2d OK=1 14.906
ns b.ns2d.ABCHW.64 OK=1 8.809
ns b.ns2d.ABCHW.64-128 OK=1 31.760

Build02 dim=3 debug=0 mpi=0
cxx= icc 6.0 cfl=-O3 -ip -unroll -I/opt/intel/compiler60/ia32/include
fc = g77 2.95.3 ffl=-O2 -malign-double -funroll-loops -fno-second-underscore

lib build OK=1 230.000309 93.77%
test build OK=1 147.988874 96.37%
example build OK=1 345.515422 96.59%
Number of tests compiled: 24 (0 had issues)

Runs:
poissonSolve t.AMRPoisson.testgrids.3d OK=1 7.147
poissonSolve t.AMRPoisson.3d OK=1 12.124
poissonSolve t.AMRPoisson.2comp.3d OK=1 19.572
amrGodunovSplit t.AMRGodunovSplit.wave3d OK=1 20.469
amrGodunovSplit t.AMRGodunovSplit.ramp3d OK=1 22.985
amrGodunovSplit t.AMRGodunovSplit.explosion3d OK=1 13.047
amrGodunovUnsplit t.AMRGodunovUnsplit.wave3d OK=1 17.149
amrGodunovUnsplit t.AMRGodunovUnsplit.ramp3d OK=1 36.870
ns t.ns3d.ring OK=1 19.583

etc.

Full regression testing of the Chombo libraries is performed weekly.
ChomboVis Testing
ChomboVis comes with two testing scripts and, orthogonal to these, a class-by-class unit
testing mode.
Integration tests

cmdline test.sh fires off ChomboVis with various legal combinations of its command
line options. The text output goes to a temporary file. If that file differs in any way from
canonicals/cmdline test.txt, then cmdline test.sh reports that an error has occurred.

api test.sh tests most (ideally it should be all) the methods comprising the external
API, that is the programming interface for user scripts. api test.sh does its work by
launching ChomboVis – twice, first on a 2D file, then on a 3D file – with the user script
option indicating examples/api test.py. It is api test.py that actually calls the API meth-
ods. Like cmdline test.sh, api test.sh compares its text output to the contents of a file
in the canonicals directory. In addition, api test.sh records an image of the VTK window,

12

and compares that to canonicals/api test2D.ppm or canonicals/api test3d.ppm. When
running api test.sh, be sure to drag your VTK window quickly away from the dialogs that
pop up around it, lest pieces of those dialogs show up in the saved image.

If you have a /.chombovisrc, it will not affect these tests as cmdline test.sh and
api test.sh say ignore rc=1 on their command lines.
Unit tests

Independently of cmdline test.sh and api test.sh, ChomboVis can be instructed, from
the command line, to cause its own classes to test themselves. The relevant command
line options are test class and test mode.

test class indicates which class to test. Any of the singleton classes (e.g. vtk grid,
vtk slice, control stream, etc) may be so tested. (For the entire list, search for self.init data
in chombovis.py.) What then happens is that if the indicated class has a method called
UnitTest, ChomboVis will invoke it. At this writing, we have not done much with the
various classes’ UnitTest methods. Thus, the testing framework is there, but the tests are
not.

When you invoke the test class option, ChomboVis will print the names of all the
classes it constructs, up to and including the one you indicated with test class. This list
comprises the minimal set of classes necessary to construct the ”test class” you indicated.
Thus, if you say test class=vtk slice, you will see this:

info:chombovis:_makeClasses():Constructing saved_states

info:chombovis:_makeClasses():Constructing vtk_vtk

info:chombovis:_makeClasses():Constructing vtk_data

info:chombovis:_makeClasses():Constructing vtk_cmap

info:chombovis:_makeClasses():Constructing vtk_slice

********** vtk_slice:unitTest()

If you want ChomboVis to construct not the minimal set of classes but the entire set,
then put test mode=max on your command line.

If you have a /.chombovisrc, and you want to use test class, then it is a good idea
to add ignore rc=1 on your command line, lest your /.chombovisrc invoke functionality
from some class that is higher-level than your ”test class”.

3.3.4 Software Products and Documentation

The deliverables in this project are described in detail in the Milestones and Schedules
section below. However, the deliverables in this project can be broken down into four
categories, corresponding to the different phases in the spiral design process. For each
category, we provide here a description, and list the milestones in section 4.2 corresponding
to that category.

• Requirements analysis. In this phase of the project, we determine the capabilities
required for each major component of the project (the two applications, and the

13

visualization and analysis tool). For the two applications, the analysis has been
performed and documented in the proposal, and in an abbreviated form in section
2 above. For the visualization and analysis tools, this analysis will be performed
as part of milestone O1.1. Products in this area corresponds to a documentation
deliverable.

• Detailed Algorithm and Software Design. In this phase of the project, we
document in detail the principal algorithm components that will be required to meet
the project goals; the API’s for the principal software components; and requirements
testing matrix for each major component. Milestones: E, H, O2.2, O4.3. Products
in this area corresponds to a documentation deliverable.

• Initial Implementation. This class of tasks includes a baseline implementation
of a new software capability, along with the completion of unit testing, verification
testing, and baseline performance measurements. Milestones: E, I, J, O2.1, O2.2,
O3.1, O3.2, O4.2. Products in this area includes both software deliverables (applica-
tions made available to the stakeholder community) and documentation deliverables
(complete requirements traceability matrix for unit and verification testing; base-
line performance document; revisions to algorithm and software design documents;
preliminary user’s guide).

• Phase II Implementation. This class of tasks is the point at which we incor-
porate improvements in the software, and release a new version. The drivers for
these improvements will include performance enhancements done in response to the
baseline measurements performed in the initial implementation; feedback from the
stakeholder community on useability and performance; and improvements in model
fidelity in response to validation testing. Milestones: F,G, O2.3, O3.3, O5.1, O5.2.
Deliverables in this area include both software (applications made available to stake-
holder community) and documentation (completed requirements traceability matrix
for validation testing; revised performance document; revisions to algorithm and
software design documents, users’ guide.

• Comprehensive Documentation of Software Internals. This task will enable
maintenance of the software after the end of the project. It will mainly consist of a
Doc++ / Doxygen annotation of the C++ header files, combined with the docu-
mentation produced in the other parts of the project. In addition to the documen-
tation, we will also deliver a comprehensive set of unit, verification, and validation
tests that will also facilitate maintenance of the the software. Milestone: K.

14

4 Management Approach

4.1 Milestones

Milestone A: Software engineering plan ($50K - delivery 7/1/02)

We will complete and deliver to NASA the documents describing the software engineering
plan, the Configuration management plan, and the quality assurance plan, following the
templates provided by NASA. We will also select and install project management software.

Milestone E: Baseline code ($140K - delivery 8/31/02)

We will perform baseline measurements of an AMR incompressible Navier-Stokes code
(AMR-INS), developed using the existing Chombo framework with DOE research funds.
This code will be the starting point for all further microgravity development. In addition,
it uses many of the software components that will be used for the star formation problem
(AMR elliptic solvers, Berger-Oliger time stepping scheme, averaging and interpolation).
We will deliver to NASA the design documents and requirements document for the baseline
code, as well as a requirements traceability matrix for the verification, validation, and
performance tests for the baseline code. The baseline code, in the form of documented
source code, will be made publicly available on the project web site.

ChomboVis Milestone O1 ($90K - delivery 8/31/02)

1. We will poll the potential users of block-structured AMR software in the NASA
ESS community, including users of PARAMESH and BATS-R-US, to determine
their visualization needs. Based on this information, we will write a requirements
document and develop a requirements traceability matrix for ChomboVis.

2. We will complete the port of ChomboVis from its current Tcl scripting environment
to the Python scripting environment. This port will include a session restart capa-
bility not currently available in ChomboVis. Documented source code will be made
publicly available on the project web site.

Milestone B: First annual report ($47K - delivery 8/31/02)

Milestone H: Interoperability / community delivery policy. ($90K - delivery
11/30/02)

We will develop and deliver to NASA initial versions of the design and requirements
documents for all of the principal interoperability milestones in the project, including
ones specifying test plans and procedures for verification and validation of all increments
in modeling capability. This work will be done in collaboration with our applications
stakeholders in microgravity and star formation.

15

Milestone F: First capability milestones ($140K - delivery 10/30/02)

We will improve the performance of the AMR-INS over the baseline obtained in milestone
E by a fivefold reduction in time to solution, with 30% less memory usage. No more than
a factor of two of the improvement in CPU time will be obtained by increasing the number
of processors. The resulting improved AMR-INS code will be made publicly available on
the project web site as documented source code.

ChomboVis Milestone O2 ($90K - delivery 11/30/02)

1. We will implement I/O interface for coupling ChomboVis with Paramesh, BATS-R-
US, and other NASA AMR users as determined in milestone 1.

2. We will implement support for visualization of data with multiple centerings (cell-
,face-,edge-, and node-centering).

3. We will design the analysis framework for ChomboVis, including data analysis tools
and scripting interface API’s, as well as the modification of the ChomboVis internals.
We will provide to NASA revised design and requirements documents based on this
design.

4. We make a release version of the Python-based ChomboVis available at the website,
including an initial version of the users’ guide. The documented source code and
and other documentation, including that for the capabilities in this milestone, will
be made publicly available on the project web site.

Milestone I: First interoperability milestone ($280K - delivery 6/30/03)

1. We will develop an extension of the AMR-INS code to support suspended particles
in an incompressible fluid, based on the extension of the immersed boundary /
local corrections algorithm to an adaptively-refined mesh. We will also develop
the Layer 1 and Layer 2 support libraries required to implement AMR multifluid
algorithms. These include software for representing the motion of the interface
and for constructing the local geometry required to compute the finite volume
discretizations on either side of the front; array classes and distributed data on
unions of rectangles; and inter-level interpolation, boundary interpolation, and inter-
level conservation tools. The development of Layer 1 and 2 support for particles
and for multifluid interfaces will be performed jointly with the SciDAC ISIC effort
at LBNL.

2. We will develop a hyperbolic AMR code for general systems of conservation laws
based on unsplit Godunov / PPM methods. Recent results of Stone indicate that
such methods are essential for the MHD simulations required for the star formation
problem. We expect them also to greatly enhance the accuracy of the coupling to
non-hyperbolic physics (radiation, conduction, self-gravity).

16

3. We will deliver to NASA revised versions of the design and requirements docu-
ments for these milestones (the initial versions were delivered in milestone H). We
will perform verification, validation, and baseline performance measurements of the
AMR-INS / particle code and the unsplit AMR hyperbolic code developed under
these milestones, using the test suite developed in milestone H, and report the
results in the requirements traceability format.

ChomboVis Milestone O3 ($90K - delivery 6/30/03)

1. We will complete a prototype implementation of the analysis tools, including a
command line interface to the scripting environment.

2. We will develop and release an animation capability.

3. We will release a new version of the visualization tools that include the capabilities
described above, along with an updated users’guide. The documented source code
and other documentation, including those for the capabilities in this milestone, will
be made publicly available on the project web site.

Milestone C: Second annual report ($47K - delivery 7/31/03)

Milestone G: Second capability milestones ($140K - delivery 11/30/03)

1. We will improve the performance of the new components developed in milestone I for
representing particles by a fivefold reduction of time to solution and a 30% decrease
in memory usage, over the baseline measurements performed in that milestone. We
will also obtain scaled speedup of 75% efficiency up to 128 processors for the AMR-
INS / particle code, and scaled speedup with 75% efficiency on 1000 processors for
the unsplit AMR hyperbolic code.

2. The AMR-INS particle code and the unsplit AMR hyperbolic code developed under
milestone I will be made publicly available on the project web site as documented
source code, including an initial version of the users guide. We will deliver to
NASA as part of the release updated versions of the requirements, design, and test
documentation described in Milestone I.

ChomboVis Milestone O4 ($90K - delivery 11/30/03)

1. We will complete a revised version of the analysis tools developed in milestone 3,
based on feedback from the NASA user community.

2. We will develop high-fidelity vector data display capabilities for multiply-centered
data; batch processing capabilities; and presentation graphics capabilities.

17

3. We will design tools for handling terascale data, including out-of-core capabilities
and SMP parallelism.

4. We will release a new version of the visualization tools that include the capabilities
described above, along with an updated users’ guide. The documented source code
and and other documentation, including that for the capabilities in this milestone,
will be made publicly available on the project web site.

Milestone J: Second interoperability milestone ($280K - delivery 6/30/04)

1. We will develop a multifluid interface tracking code AMR-MFINS. This includes
the development of multi-fluid elliptic and hyperbolic solvers (MFElliptic, MFHy-
perbolic); and the integration of these libraries to obtain a Layer 4 incompressible
code for two-phase flow with surface tension.

2. We will develop a coupled hyperbolic AMR code to self-gravity (AMR-SG) and an
MHD version of the hyperbolic code (AMR-MHD).

3. We will deliver to NASA revised versions of the design and requirements documents,
as well as an initial version of the users’ guides for these codes. We will perform
baseline measurements of the AMR-MFINS, AMR-SG, and AMR-MHD codes using
the test suite developed in milestone H, and report the results in the requirements
traceability matrix format.

ChomboVis Milestone O5 ($90K - delivery 6/30/04)

1. We will complete development of the Terascale data capability.

2. We will release the final version of ChomboVis, including the terascale capability.
We will deliver to NASA documentation including a maintenance maual, updated
requirements and test documents to reflect portability tests, and updates to the
users guide and to the requirements and design documents to reflect the as-built
system. We will release a new version of the visualization tools that include the
capabilities described above, along with an updated users’guide. The documented
source code and other documentation, including that for the capabilities in this
milestone, will be made publicly available on the project web site.

Milestone D: annual report: ($37K - delivery 7/31/04)

Milestone K: Customer delivery: ($140K - delivery 11/30/04)

1. We will improve the performance of the AMR-MFINS code developed in milestone
J by a fivefold reduction of time to solution, and a 30% decrease in memory usage,
over the baseline measurements performed in that milestone. No more than a factor
of two of the improvement in time to solution will be obtained by increasing the

18

number of processors. We will also obtain scaled speedup of 75% efficiency up to
128 processors for both the AMR-MFINS code and the self-gravity AMR hyperbolic
code.

2. We will make publically available the codes from milestone J on the project web site
as documented source code. We will deliver documentation including a maintenance
manual, updated requirements and test documents to reflect portability tests, and
updates to the users guide and to the requirements and design documents to reflect
the as-built system.

Milestone D: Final report: ($10K - delivery 11/30/04)

4.2 Metrics

For the simulations software being developed here, are two classes of metrics that are ap-
propriate, corresponding to the interoperability and capability milestones described above.
For the capability milestones, the metrics will be the increase of performance over the
baseline results. For the interoperability milestones, the metric for success will be the
ability to simulate new physics. The specific goals for these simulations will be specified
for the whole project as part of the deliverables in Milestone H.

For the visualization and analysis tools, the metrics for success will be the delivery of
new tools required by the users, as specified in the report to be submitted under Milestone
O1.1.

4.3 Risk Management

For the simulations software being developed here, there are two components of risk, both
related to the complexity of the algorithms being implemented. At the algorithmic level,
we are are combining a set of components (AMR, projection methods for incompressible
flow, particle methods, embedded boundary / volume-of-fluid discretizations) which, by
themselves, have been well-validated in their individual domains, but when combined,
represent uncharted territory, particularly with respect to numerical stabilities in the cou-
pled system. Furthermore, each of these components are high-resolution, second-order
accurate methods, and are being combined in a way that preserves those properties. In
particular, if there are numerical instabilities in the coupling, there are no O(∆x) damping
terms that are often used in traditional multiphysics codes to stabilize such couplings. The
second component of risk comes from software complexity that follows from the algorithm
complexity. The algorithms described here involve complicated combinations of regular
and irregular calculations, and elaborate data and control structures. One example of this
is the range of data representations that are used to implement these calculations: locally
uniform grids, block-structured nested grids, particle-in-cell data, and sparse multivalued
grid variables for embedded boundaries. With such complex software, there is the risk of

19

producing incorrect code, as well as the risks associated with getting good performance
(both serial and parallel) for such calculations.

There are two aspects to our plan that are specifically intended to mitigate these two
risks. The first is the use of a layered component architecture, with software components
corresponding to algorithm components whose stability and accuracy properties are well-
understood. This approach allows us to build and test components separately, using the
test suite described in section 3.3.3. In particular, we have found that verification testing
for convergence at the known rate is a fine discriminant for code correctness. Such a
test regime gives us a high degree of confidence that the components are implemented
correctly. Furthermore, if problems are identified later, they can be corrected in the com-
ponent, and propagated throughout the software system in a systematic fashion. The
second aspect of the plan is the front-loading of some of the highest-risk parts of the
project in relatively early stages of the project. Specifically, we view the first capability
milestone F as a stringent test of whether we will be able to meet the performance re-
quirements of the project, and the interoperability milestone I as representing a significant
portion of the new physical modeling capabilities. In each case, we will have sufficient
time, if necessary, to rethink modify our approach to these critical issues within the time
of the overall project.

For ChomboVis, the principal risk is meeting the needs of a diverse user base within
the budget and time allowed. To mitigate this risk, we have frequent releases of new
capabilities within the scope of the project, and early interactions and frequent interactions
with our users. The key components to this strategy is milestone O1.1, in which we poll
the users and develop a requirements document, and milestone O2.1, which will provide
an I/O interface that will make ChomboVis available to a broad range of users.

A final risk specific to this project is that of being able to obtain all of the compo-
nents of the software environment required for the project: specifically, the availability
of standard-conforming C++ compilers and MPI and HDF5 ports on the high-end plat-
forms procured by NASA. Our strategy for mitigating that risk is to make NASA project
management aware of our requirements as they undertake the procurement process.

5 Product Assurance

5.1 Configuration Management

5.1.1 Configuration Control

CVS revision control All configuration control items are stored in the Concurernt Ver-
sions System (CVS) http://www.cvshome.org/docs/ . The user can reference the CVS
documentation for the specifics of this control process. All respositories are monitored
by several people on every update from the development teams and each modifcation to
each file requires a log entry to be created documenting the nature of the change. Other
users and developers can access these updates through the cvs update mechanism (this

20

includes remote collaborators).
We will not go into too much length describing CVS operations. It will be noted that

every single thing done on this project, including these reports, are stored and archived in
the CVS system. All previous revisions and the entire development path are available for
review.
TTPro Tracking System

for Defect and project tracking, we use the commercial software product TTpro (ref.
http://www.seapine.com/ttpro.html . The tracking categories we use are

Product Component
Chombo Installation

Documentation
Code
ChomboFortran
Parallel
Performance

EBChombo Installation
Documentation
Code
Parallel
Performance

ChomboVis Installation
Documentation
Code
Performanmce

Applications Incompressible Navier-Stokes
Particle in Cell

WorkStations Software
Hardware

TTPro

Each [Product,Component] combination has a single individual responsible for ensuring
each added issue gets reviewed, categorized, and assigned. TTPro then tracks the history
of each issue and can produce full and partial reports as per the state of the development
effort. This tool was used to great effect in reaching the goal of zero known defects in
Chombo for the recent 1.2 release.

Brian van Straalen will be responsible for overseeing configuration management issues.

5.1.2 Accounting

Most reporting is handled by the tools discussed in the previous section. TTPro has very
elaborate reporting suitable for meetings, management, customers, and so forth at various

21

levels of detail
selecting open:defects produces a printable listing as a series of defects as such

06/13/02

Defect No: 11

Date Entered: 10/26/01

Product: ChomboVis

Entered by: Van Straalen, Brian

Component: Code

Status: Open, assigned to Sternberg, Ted

Severity: Workaround

Type: Feature Request

Priority: Medium

Disposition: Open - Reviewed

Reference:

Summary: change of variable in spreadsheet

Release Notes:

Workaround:

-- Reported By ---

Found by: Van Straalen, Brian

Date Found: 10/26/01

Version Found: 3.2.2

Description: Need to be able to change the displayed variable in a

spreadsheet. And

the spreadsheet should remain in the same place (same i,j,k).

The workaround is to change variable, and then open a new spreadsheet

for the same grid.

P.S. If the selector is on, highlight the datum (in the spreadsheet) that

corresponds to the precise point the selector hits in the selected plane

of the selected box.

Reproduced: Always

Steps to Reproduce:

User’s Computer Configuration

Other Hardware and Software:

Attachments:

none

22

...
more elaborate report filtering is available to us (after a considerable setup cost on our
part).

Code and documents are tracked in this manner.
Once a week derelict (unreviewed or unassinged) defects are scanned for and reported

in a group mailing to the offending individuals. The status of the workstations and devel-
opment environment are brought to the weekly system administration meeting between
the PI and the systems group. Once a month the current outstanding software defects
are reviewed and prioritized along with current development efforts.

5.1.3 Storage and Handling

:
delivery of products

Deliverables will be made available on our NASA website: http://davis.lbl.gov/NASA
. Documents will be made available in Portable Document Format (pdf). Source code
will be made available as unix tape archive (tar file).
backups and retrieval

All digital material is archived using the latest archiving technology from the High
Performance Storage System (HPSS) run by the Nationanal Energy Research Scientific
Computing Center (NERSC) http://hpcf.nersc.gov/storage/hpss/ . These are
done on daily, weekly and monthly schedules for full and incremental backups. All docu-
ments, web pages, TTPro databases, source code respositories, and home directories are
backed up. Since the NERSC HPSS facility is located in downtown Oakland, a distance
of over five miles from the LBNL site, the backups will also be protected from potential
catastrophic events at the LBNL site.

5.2 Quality Assurance

5.2.1 Coding Standards

All delivered software abides by the ANAG Coding Standards document included as sepa-
rate document of this submission package. This includes instructions about source code
documentation that are then utilized by doc++/doxygen to generate synchronized hyper-
linked reference manuals.

5.2.2 Quality Assurance Activities

We will undertake the following quality assurance activities, coordinated with the mile-
stones in the project.

• Design reviews. Formal design documents are early deliverables for the project
(Milestones H, O1.1). They will be made available for the stakeholder community
to review at that time.

23

• Tracking consistency between documentation and source code release. This will
be done prior to the code releases representing interoperability milestones (E,F,G),
capability milestones (I,J,K), and ChomboVis software release milestones O1-5.

• Ensuring tests are executed and problem reports written. The reports regarding
testing are part of the deliverables for the interoperability milestones.

• Verification that problem reports are resolved and the tracking system updated.
Outstanding problem reports on TTPro are reviewed weekly by the QA officers and
discussed with the individuals to which they have been assigned, with new problems
assigned to the appropriate developer.

• Monitoring coding standards. All codes are reviewed prior to release for conformance
to coding standrds.

• Code walk-throughs and reviews. Prior to milestone releases, code reviews are held
by the development team and the QA officers.

As indicated above, Brian van Straalen and Phillip Colella will act as quality assurance
officers for the project.

References

[ABC94] A. S. Almgren, T. Buttke, and P. Colella. A fast adaptive vortex method in
three dimensions. J. Comput. Phys., 113(2):177–200, 1994.

[ABC+98] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. J. Welcome. A
conservative adaptive projection method for the variable density incompressible
Navier-Stokes equations. J. Comput. Phys., 142(1):1–46, May 1998.

[And86] C. R. Anderson. A method of local corrections for computing the velocity field
due to a distribution of vortex blobs. J. Comput. Phys., 62:111–123, 1986.

[BCG89] J. B. Bell, P. Colella, and H. M. Glaz. A second order projection method for
the incompressible Navier-Stokes equations. J. Comput. Phys., 85(2):257–283,
December 1989.

[BCW91] J. B. Bell, P. Colella, and M. Welcome. A conservative front-tracking for
inviscid compressible flow. In Proceedings of the Tenth AIAA Computational
Fluid Dynamics Conference, pages 814–822. AIAA, June 1991.

[CGM+] P. Colella, D. T. Graves, D. Modiano, D. Serafini, and B. Van
Straalen. The Chombo software package for AMR applications.
http://seesar.lbl.gov/anag/chombo.

24

[CM00] R. Cortez and M. Minion. The blob projection method for immersed boundary
problems. J. Comput. Phys., 2000. to appear.

[Col90] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws.
J. Comput. Phys., 87:171–200, March 1990.

[GHJ+95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Grady Booch.
Design Patterns: Elements of Reusable Object Oriented Software. Addison-
Wesley, 1995.

[JC98] H. Johansen and P. Colella. A Cartesian grid embedded boundary method
for Poisson’s equation on irregular domains. J. Comput. Phys., 147(2):60–85,
December 1998.

[MC00a] D. F. Martin and P. Colella. A cell-centered adaptive mesh projection method
for viscous incompressible flow. Technical report, Lawrence Berkeley National
Laboratory, 2000. to appear.

[MC00b] D Modiano and P. Colella. A higher-order embedded boundary method for
time-dependent simulation of hyperbolic conservation laws. In Proceedings of
the FEDSM 00 - ASME Fluids Engineering Simulation Meeting, Boston, MA,
June 2000.

[McC96] Steve McConnell. Rapid Development : Taming Wild Software Schedules.
Microsoft Press, 1996.

[PC00] R. M. Propp and P. Colella. An adaptive mesh refinement algorithm for porous
media flows. Technical Report LBNL-45143, Lawrence Berkeley National Lab-
oratory, January 2000. submitted to J. Comput. Phys.

[Pes82] C. Peskin. The fluid dynamics of heart valves: Experimental, theoretical, and
computational methods. Ann. Rev. Fluid Mech., 14:235–259, 1982.

25

