User Guide for AMR Incompressible
Navier-Stokes with Particles (PAmrNS) Code

Dan Martin and Phil Colella
Applied Numerical Algorithms Group

January 19, 2005

1 Overview

The PAmrNS code implements the algorithm described in the “Incompress-
ible Navier-Stokes with Particles Algorithm Design Document” [3] using the
software design described in the “Incompressible Navier-Stokes Software De-
sign” [2] and “Software Design for Particles in Incompressible Flow, Non-
Subcycled Case” [4] documents.

2 Obtaining and compiling the code

The AMR Incompressible Navier-Stokes with Particles code may be ob-
tained from the ANAG NASA CAN website (http://davis.1bl.gov/NASA
); using the code also requires the Chombo framework [1], the AMRINS
software package (available at http://seesar.1bl.gov/NASA), and the fftw
3.0.1 FFT software package, downloadable from http://www.fftw.org. The
Chombo framework also uses HDF5 for 1/0.

To compile the code, first install the HDF5, fftw, and Chombo libraries
according to the instructions in each package. Note that at th current
time, the particle code only runs in 3D (so Chombo must be compied with
DIM=3). Then, unpack the AMRINS code (this will unpack into a Chombo-
TAMR directory) and the PAmrNS tarfile, which will unpack into a particle-
IAMR directory. Compilation will be simpler if the Chombo, AMRINS,
and PAmrNS tarfiles are all unpacked in the same location. Change to the



particle-IAMR/exec-nonSubcycled directory and edit the GNUmakefile
appropriately to supply locations for the Chombo libraries and the fftw li-
braries.

Finally, compile the code: make all DIM=3 [DEBUG=<TRUE,FALSE>] with
“DEBUG=FALSE” producing optimized code.

An executable of the form ns3d.<config-string>.ex , where the <config-string>
contains information about how the code was compiled.

3 Running the code

To run the code, type ns3d.<config-string>.ex <inputs-file> , where
inputs-file is a file containing the parameters needed to specify the run
parameters.

3.1 Inputs file options

The format for the inputs file is generally of the form <group>.<variable> =
<value(s) > , where <group> generally indicates what part of the code uses
a given input. Everything following a “#” on a line is ignored, and in the case
of multiple instances of a variable in an inputs file, the last instance is used.
A sample inputs file is in particle-IAMR/exec-nonSubcycled/inputs.

Some input parameters are required, while others have default values if
they are not specified in the inputs file. Required variables are listed first,
followed by optional ones.

3.1.1 Input parameters for main

e main.num_cells (required) SpaceDim integers — number of cells in
each direction in the base computational domain.

e main.domainLength (required) SpaceDim Reals — length of physical
domain in each direction (dx on the coarsest level will be domainLength[0]/num_cells[0])

e main.max_step (default = 0) integer — maximum number of timesteps
to compute.

e main.max_time (default = 0) Real — maximum solution time to com-
pute to.



main.verbosity (default = 0) integer — higher number results in more
verbose text output.

main.fixed_dt (default =-1) Real — if positive, code will use this value
for the timestep.

main.is_periodic (default = 0) SpaceDim integers. In each coordi-
nate direction, if 1, domain is periodic in that direction; if 0, nonperi-
odic.

main.max_level (default = 0) integer — finest allowable refinement
level. 0 means there will be no refinement.

main.ref_ratio (required if max_level ; 0) max_level integers (one
for each level). refinement ratios between levels. First number is ratio
between levels 0 and 1, second is between levels 1 and 2, etc.

main.regrid_interval (default = -1) integer — number of timesteps
to compute between regridding. A Negative value means there will be
no regridding.

main.block_factor (default = 2) integer — the block factor is the
number of times that grids will be coarsenable by a factor of 2. This
can have implications on how well multigrid solvers work. A higher
number produces “blockier” grids.

main.max_grid_size (default = 32) integer — the largest allowable size
of a grid in any direction. Any boxes larger than that will be split up
to satisfy this constraint.

main.fill_ratio (default = 0.75) Real between 0 and 1. — the effi-
ciency of the grid generation process. Lower number means that more
extra cells which aren’t tagged for refinement wind up being refined
along with tagged cells. The tradeoff is that higher fill ratios lead to
more complicated grids, and the extra coarse-fine interface work may
outweigh the savings due to the reduced number of fine-level cells.

main.grid_buffer_size (default = 2) integer — number of level ¢ cells
between the ¢ — (¢ + 1) and (¢ — 1) — ¢ interfaces required for the grids
to be considered properly nested.



e main.checkpoint_interval (default =-1) integer — number of timesteps
between writing checkpoint files. Negative number means that check-
point files are never written, 0 means that checkpoint files are written
before the initial timestep and after the final one.

e main.plot_interval (default = -1) integer — number of timesteps be-
tween writing plotfiles. Negative number means that plotfiles are never
written, 0 means that plotfiles are written before the initial timestep
and after the final one.

e main.checkPrefix (default “chk”) string — prefix for checkpoint files.
e main.plotPrefix (default “plt”) string — prefix used for plotfiles.

e main.max_dt_grow (default = 1.5) Real — maximum factor by which
the timestep can increase from one timestep to the next.

e main.gridfile (default is none) string — if present, indicates the file
from which the initial grid hierchy will be read.

e main.cfl (default = 0.5) Real — CFL number (maximum allowable
value for max(vel)*dt/dx.

e main.particleCFL (defaults to main.cfl) Real — similar to main.cfl,
except using max(particleVel).

3.1.2 Input parameters for ns

e ns.particle_epsilon (required) Real — parameter for the particle
delta function. FEssentially the width of the discrete delta function
used to spread particle forces to the mesh.

e ns.spreadingRadius (required) Real — parameter for the particle pro-
jection — related to the size of the locus around each particle upon
which the particle projector’s kernel is computed.

e ns.init_shrink (default = 1.0) Real — factory by which to shrink the
initial timestep.

e ns.max_dt (default = 1.0e8) Real — maximum allowable timestep.



ns.project_initial_vel (default = 1) integer — if 1, project the ini-
tial velocity to ensure that it is discretely divergence-free. if 0, don’t
do this.

ns.update_velocity (default = 1) integer — if 0, don’t update the
velocity field at the end of the timestep (all the computations are done,
but then the velocity field is reverted to what it was at the beginning of
the timestep. The result is a velocity field which is constant in time.)

ns.init_pressures (default = 1) integer — if 0, don’t initialize the
pressure before the first timestep.

ns.num_init_passes (default = 1) integer —if init_pressuures is not
0, then the number of initialization timesteps to compute for pressure
initialization.

ns.tag_vorticity (default = 0) integer — if 1, then tag for refinement
based on undivided vorticity. if 0, then don’t.

ns.vorticity_tagging factor (default = 0.30) Real —if tag_vorticity
is 1, then this is the threshold value at which we tag cells for refinement
during the grid generation process. if the undivided vorticity is greater
than the tagging factor, then the cell is tagged for refinement to a finer
level.

ns.tag_particles (default = 1) integer — if 0, then don’t tag for re-
finement based on particles. If 1, then all cells containing particles will
be refined to the finest allowable level.

ns.tags_grow (default = 1) integer — amount by which to grow tags
(as a safety factor) before passing to MeshRefie.

ns.viscosity (default = 0.0) Real — the kinematic viscolsity of the
fluid.

ns.particle_drag_coeff (default = 0.0) Real — Drag coefficient for
the particles.

ns.particleProjCoarsen (default = -1) integer — amount to coarsen
particle projection before sending to the infinite domain solver. Nega-
tive number means that we use the default value in AMRParticleProjector.



ns.particle_body_force (default = 0) SpaceDim Reals — body force
on each particle in each component direction. For example, could be 0
0 w, where w is the weight of the particle.

ns.correctionRadius (default = 2) Real — parameter for the particle
projector.

ns.particleGridsGrow (default = 2) integer — amount to grow auxil-
iary grids for particles (buffer to ensure that particles don’t run off the
grown grids in the AMRParticleProjector between regridding steps.

ns.use_image_particles (default = 0) integer — if 1, use image par-
ticles to help enforce the no-flow condition at solid walls. If 0, don’t
use image particles.

ns.do_particles (default = 1) integer — if 1, do particle updates and
include particle drag force in the fluid computations. If 0, don’t do
these things.

ns.read_particles_from_file (default = 1) integer — if 1, read parti-
cles from a file, given by ns.particle_file. If 0, particles are defined
in the code.

ns.particle_file (required if ns.read_particles_from_file is 1)
string — name of file containing particle masses, initial positions, initial
velocities, etc.

ns.order_vel_interp (default = 1) integer — if 1, do linear interpo-
lation of fluid velocities to particle positions (for drag computation), if
0, do piecewise constant.

ns.limit_Vel_interp (default =0) integer — If 1, limit slopes used in
fluid velocity interpolation, if 0, don’t limit these slopes. Only relevant
if ns.order_vel_interp is nonzero.

ns.particle_update_type (default = 2) Type of update scheme to use
to update particle position and velocity. 0 = basic predictor-corrector,
1 = forward Euler, 2 = more accurate predictor-corrector, and 3 =
forwardEuler using the predictor scheme in 2. 2 is recommended.



ns.viscous_solver_tolerance (default = 1le-7) Real — tolerance to
use for the AMRSolver for the viscous solves.

ns.viscous_num_smooth_up (default = 4) integer — multigrid solver
parameter for the viscous solvers.

ns.viscous_num_smooth_down (default = 4) integer — multigrid solver
parameter for the viscous solvers.

ns.num_scalars (default = 0) integer — number of scalar components
to advect/diffuse.

ns.scal_diffusion_coeffs (required if ns.num_scalars = 1) Array
of num_scalars Reals. Diffusion coefficients for the scalars.

ns.specifyInitialGrids (default = 0) integer — if 1, specify initial
grid hierarchy (which may be changed later due to regriddig). If 0,
generate grids adaptively using tagging criteria.

ns.initialGridFile (required if ns.specifyInitialGrids = 1) string
— file containing initial grid hierarchy info.

ns.initVelFromVorticity (default = 0) integer — if 1, initialize veloc-
ity by solving from a specified vorticity field. If 0, velocity is initialized
analytically.

ns.backgroundVelocity (default = 0.0) Real — if nonzero, background
velocity field in the z—direction (value is added to velocity field in the
z—direction.

ns.writeParticles (default = 1) integer — if nonzero, write particles
to plotfiles.

ns.writeDivergence (default = 1) integer — if nonzero, write diver-
gence to plotfiles.

ns.writeTimeDerivatives (default = 0) integer — if nonzero, write
time derivatives of velocity to plotfiles.

ns.writeVorticity (default = 1) integer — if nonzero, write vorticity
to plotfiles.



e ns.writeScalars (default = 0) integer — if nonzero, write scalar solu-
tion to plotfiles.

e ns.writeDscalDt (default = 0) integer — if nonzero, write time deriva-
tives of scalars to plotfiles.

e ns.writeProcIDs (default = 0) integer — if nonzero, write processor
distribution to plotfiles.

3.1.3 Input parameters for projection

e projection.numSmoothUp (default = -4) integer — multigrid solver pa-
rameter for the viscous solvers.

e projection.numSmoothDown (default = -4) integer — multigrid solver
parameter for the viscous solvers.

e projection.solverTol (default = le-9) Real — tolerance to use for
the AMRSolver for the viscous solves.

3.1.4 Input parameters for physBC

e physBC.lo (requires SpaceDim integers) Type of physical boundary
condition to apply on the low side in each direction. 0 = solidWall,
1=inflow, 2=outflow, 3=symmetry, 4=noShear.

e physBC.hi (requires SpaceDim integers) Type of physical boundary
condition to apply on the high side in each direction. 0 = solidWall,
1=inflow, 2=outflow, 3=symmetry, 4=noShear.

e physBC.maxInflowVel (default = 1.0e8) If inflow BC is selected, max-
imum value that it will take (used to compute timestep)

3.2 Visualizing the results

If main.plot_interval is non-negative, the PAmrNS code will write solu-
tions out into hdf5 plotfiles, which are in the format used by the ChomboVis
visualization tool.



References

[1] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.
Serafini, and B. Van Straalen. Chombo Software Package for AMR Ap-
plications - Design Document. unpublished, 2000.

[2] Applied Numerical Algorithms Group. Incompressible Navier-Stokes soft-
ware design. Technical report, NERSC Division, Lawrence Berkeley Na-
tional Laboratory, 2002.

[3] Dan Martin and Phil Colella. Incompressible Navier-Stokes with parti-
cles design document. Technical report, Applied Numerical Algorithms
Group, Lawrence Berkeley Laboratory, 2003.

[4] Dan Martin and Phil Colella. Software Design for Particles in In-
compressible Flow, Non-Subcycled Case. Applied Numerical Algorithms
Group, Lawrence Berkeley Laboratory, 2003.



