
Incompressible Navier-Stokes Software Design

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

August 8, 2003

Contents

1 Introduction 3
1.1 Purpose, goals, Objectives . 3
1.2 Statement of Scope . 3

2 Algorithm Description 4
2.1 Formulation of the Problem . 4
2.2 Projection Formulation . 4
2.3 AMR Notation . 5
2.4 AMR timestepping . 9
2.5 Multilevel Algorithm . 10

2.5.1 Variables . 10
2.5.2 Level Advance . 10
2.5.3 Recursive update of finer levels 16
2.5.4 Synchronization . 16

2.6 Regridding and Pressure Initialization 18
2.6.1 Project new velocity field . 18
2.6.2 Compute level pressures π . 18
2.6.3 Initialize ~up . 18

2.7 Pseudocode Description of Algorithm 19
2.7.1 Notation . 19
2.7.2 Timestep for level ` . 20
2.7.3 Regridding and Pressure Initialization 22

3 System Architecture and Component-level Design 25
3.1 Architecture Diagram . 25
3.2 Data Design . 25

3.2.1 Global Data Structures . 25
3.2.2 Internal Software Data Structures 27

3.3 Basic Design . 27
3.4 The class AMRNavierStokes . 28
3.5 The class CCProjector . 31
3.6 Important Chombo functionality used in Navier-Stokes computation . . 35

1

4 User Interface Design 37
4.1 User Interface Components – Input files 37
4.2 User Interface Components – FORTRAN files 41
4.3 User Interface Components – Outputs 41

5 Checklist 43

2

Chapter 1

Introduction

1.1 Purpose, goals, Objectives

The purpose of this project is to provide an adaptive mesh refinement (AMR) code capa-
bility for simulating multiphase low-Mach-number fluid dynamics in microgravity environ-
ments.

1.2 Statement of Scope

This software is intended to solve the incompressible Navier-Stokes equations using block-
structured adaptive mesh refinement (AMR) techniques. This code incorporates refine-
ment in time as well as space, is second-order in time and space, and maintains conser-
vation and approximate freestream preservation at coarse-fine interfaces. The divergence
constraint of incompressible flow is approximately maintained in a composite sense across
the entire hierarchy of refined grids.
The software is written for use in both serial and parallel environments, using MPI on

parallel machines.
User inputs generally consist of a subroutine defining the initial velocity profile, along

with an inputs file which defines operating parameters such as number of cells in the
domain, maximum number of refinement levels, etc.
Output of the code is generally in the form of some limited screen output (generally

indicating the progress of the code) and hdf5 plotfiles, which are in a format accessible
by ChomboVis, the Chombo data visualization tool.

3

Chapter 2

Algorithm Description

2.1 Formulation of the Problem

We are solving the incompressible constant-density Navier-Stokes equations with body
forces:

∂~u

∂t
= −(~u · ∇)~u−∇p+ ν∇2~u+ ~F , (2.1)

∇ · ~u = 0, (2.2)

~u = 0 on ∂Ω,

where ~u(~x, t) is the fluid velocity vector (u, v)T , t is the time, and p(~x, t) is the pressure.
We also evolve an auxiliary passively transported scalar Λ, which we use to compute the
freestream preservation correction.

∂Λ

∂t
+∇ · (~uΛ) = 0 (2.3)

2.2 Projection Formulation

We transform the constrained dynamics problem of equations (2.1) and (2.2) into an
initial value problem through the use of the Hodge-Helmholtz decomposition. An arbitrary
vector field ~w can be uniquely decomposed into two orthogonal components, one of which
is divergence-free, the other the gradient of a scalar:

~w = ~wd +∇φ

∇ · ~wd = 0

∆φ = ∇ · ~w on Ω (2.4)

~wd · ~n = 0,
∂φ

∂~n
= ~w · ~n on ∂Ω

4

∫

Ω

~wd · ∇φ d~x = 0.

This decomposition can be expressed in terms of an orthogonal projection P : P(~w) = ~wd,
computed by solving (2.4) for ∇φ and subtracting to obtain the divergence-free part.
Formally,

P = I −∇(∆)−1∇·
Using the projection operator, the constrained system (2.1)-(2.2) can be transformed into
a pure evolution equation, with the constraint applied to the initial data:

∂~u

∂t
= P(−~u · ∇~u+ ν∇2~u+ ~F)

(∇ · ~u)(·, t = 0) = 0.

Chorin [Cho68] used this formulation as the starting point for a discretization of the
incompressible flow equations. Following [BCG89], our algorithm is a predictor-corrector
formulation in which we first compute an intermediate velocity field and project it onto
the space of vectors which satisfy the divergence constraint. Updates to the scalar Λ are
computed using a conservative update.
On a uniform grid with grid spacing h, the velocity ~u(~x, t) is approximated by ~ui,j(t) ≈

~u(ih, jh, t). The scalar field Λ(~x, t) is likewise approximated as Λi,j(t) ≈ Λ(ih, jh, t).
Then,

~u(t+∆t) = P
(
~u(t)−∆t(~u · ∇~u)H + ν(∇2~u)H + ~FH

)
(2.5)

∇pH =
1

∆t
(I−P)

(
~u(t)−∆t(~u · ∇~u)H + ν(∆~u)H + ~FH

)
(2.6)

Λ(t+∆t) = Λ(t)−∆t∇ · (~uΛ)H ,
where the superscript H indicates centering at the intermediate time (t+ 1

2
∆t). Following

[Col90], (~u·∇~u)H and (∇·(~uΛ))H are computed using a second-order upwind method. Eq.
(2.5) can also be expressed in terms of the pressure gradient (∇pH)i,j ≈ ∇p(ih, jh, t+∆t

2
),

where ∇pH is computed using (2.6):

~u(t+∆t) = ~u(t)−∆t(~u · ∇~u)H +∆tν(∆~u)H +∆t ~FH −∆t(∇p)H .

2.3 AMR Notation

Following [BC89], our adaptive mesh calculations are performed on a hierarchy of nested,
cell-centered grids (Figure 2.1). At each AMR level ` = 0, ..., `max, the problem domain
is discretized by a uniform grid Γ` with grid spacing h`. Level 0 is the coarsest level, while
each level ` + 1 is a factor n`ref = h`

h`+1
finer than level `; the refinement ratio n`ref is an

integer. Because refined grids overlay coarser ones, cells on different levels will represent
the same geometric region in space. We identify cells at different levels which occupy

5

x

y

Figure 2.1: Block-structured local refinement. Note that refinement is by an integer factor
and is organized into rectangular patches.

the same geometric regions by means of the coarsening operator Cr(i, j) = (b i
r
c, b j

r
c). In

that case, {Cr}−1{(i, j)} is the set of all cells in a grid r times finer that represent the
same geometric region (in a finite volume sense) as the cell (i, j).
In the current implementation, the problem domain is a rectangle, and the refinement

ratios are powers of two. Calculations are performed on a hierarchy of meshes Ω` ⊂ Γ`,
with Ω` ⊃ Cn`

ref
(Ω`+1). Ω` is the union of rectangular patches (grids) with spacing

h`; the block-structured nature of refinement is used in the implementation to simplify
computations on the hierarchy of meshes. On the coarsest level, Ω0 = Γ0. A cell on a
level is either completely covered by cells at the next finer level, or it is not refined at
all. Since we assume the solution on finer grids is more accurate, we distinguish between
valid and invalid regions on each level. The valid region on a level is not covered by finer
grid cells: Ω`

valid = Ω` − Cn`
ref

(Ω`+1). The grids on each level satisfy a proper nesting

condition [BC89]: no cell at level ` + 1 represents a geometric region adjacent to one
represented by a valid cell at level `− 1.
Likewise, Ω`,∗ denotes the cell faces of level ` cells, while Ω`,∗

valid refers to the cell faces
on level ` not covered by level ` + 1 faces. Note that the coarse-fine interface ∂Ω`+1,∗

between levels ` and `+1 is considered to be valid on level `+1, but not on level `. The
coarsening operator also extends to faces: Cn`

ref
(Ω`+1,∗) is the set of level ` faces covered

by level `+ 1 faces.
A composite variable is defined on the union of valid regions of all levels. Since

we organize computation on a level-by-level basis, the invalid regions of each level also
contain data, usually an approximation to the valid solution. A level variable is defined
on the entire level Ω` (not just the valid region). For a cell-centered variable φ, the level
variable φ` is defined on all of Ω`; the composite variable φcomp is defined on the union
of valid regions over all levels. We also define composite and level-based vector fields,

6

top
edge

edge
i+1/2, j

i, j-1/2

edge
i, j+1/2

edge

v

v

u

u

bottom
edgeu

Figure 2.2: Sample two-dimensional coarse-fine interface with an face-centered vector
field. Cell (i,j) (open circle) is to the right of the coarse-fine interface.

which are defined at normal cell faces. Like other face-centered variables, a composite
vector field ~uface,comp is valid on all faces not overlain by finer faces (Fig 2.2). Likewise,
we define composite and level operators which operate on composite and level variables,
respectively.
It is also necessary to transfer information from finer grids to coarser ones. We define

〈φ`+1〉 to be the appropriate cell-centered or face-centered arithmetic average of level `+1
data φ`+1 to the underlying coarser cells in level `.

Divergence, Flux Registers, and Reflux-Divergence

The basic multilevel divergence is a cell-centered divergence of an face-centered vector
field. If none of the faces of cell (i, j) are coarse-fine interfaces, we use a centered-
difference divergence:

(Dcomp,`~uface)i =
D−1∑

d=0

u
face

i+ed,d
− u

face

i−ed,d

h`
. (2.7)

On the fine side of a coarse-fine interface, the stencil is unchanged, since the coarse-fine
interface with the coarser level `− 1 is a valid face in level `. For cells on the coarse side
of a coarse-fine interface, the coarse-grid vector on the coarse-fine interface is the average
of the fine-grid vectors on that face. For the two-dimensional coarse-grid cell in Figure
2.2, the divergence operator is:

(Dcomp,`~uface)i,j =
u
face,`

i+ 1
2
,j
− 〈uface,`+1〉i− 1

2
,j

h`
+
v
face,`

i,j+ 1
2

− v
face,`

i,j− 1
2

h`
. (2.8)

7

The level-operator divergence D` of a level variable ~uface,` is defined by ignoring
any finer levels and computing D` everywhere in Ω` using (2.7). Since the composite
divergence on level ` depends on both level ` and level ` + 1 data, it may be written as
Dcomp,`(~uface,`, ~uface,`+1); the level operator only depends on level ` data: D`(~uface,`).
Assume that the vector field ~uface,` can be extended to all faces in Ω`,∗, includ-

ing those covered by the coarse-fine interface face ∂Ω`+1,∗. The composite divergence
Dcomp~uface,comp on Ω` may then be expressed as the level-operator divergence D` along
with a correction for the effects of the finer level (` + 1). To do this efficiently, we de-
fine a flux register δ~u`+1 defined on Cn`

ref
(∂Ω`+1,∗), which stores the difference in the

face-centered quantity ~uface on the coarse-fine interface between levels ` and `+ 1. No-
tationally, δ~u`+1 belongs to the fine level (` + 1) because it represents information on
∂Ω`+1,∗. However, it has coarse-level (`) grid spacing and indexing.
We define the reflux divergence D`

R to be theD
` stencil as applied to the face-centered

vectors on the coarse-fine interface with level ` + 1; the general composite operator can
then be expressed as:

(Dcomp,`~uface)i = (D`~uface,`)i +D`
R(δ~u

`+1)i,

δ~u`+1 = 〈~uface,`+1〉 − ~uface,` on Cn`
ref

(∂Ω`+1,∗).

For the level ` cell (i), D`
R can be defined as:

D`
R(δ~u

`+1)i =
1

h`

∑

p

±(δ~u`)p,

where the sum is over the set of all faces of cell i which are also coarse-fine interfaces
with level `+ 1, and the ± is + if the face p is on the high side of cell i, and - if p is on
the low side. Note that D`

R only affects the set of level ` cells immediately adjacent to
the coarse-fine interface with level `+ 1.

Gradient and Coarse-Fine Interpolation

The gradient is a face-centered, centered-difference gradient of a cell-centered variable φ.
Gcompφ is a composite vector field, defined on all valid faces in the multilevel domain. On
faces which are not coarse-fine interfaces,

Gcomp,`(φ)x
i+ 1

2
,j,k

=
φi+1,j,k − φi,j,k

h`
(2.9)

Gcomp,`(φ)y
i,j+ 1

2
,k

=
φi,j+1,k − φi,j,k

h`
.

Gcomp,`(φ)z
i,j,k+ 1

2

=
φi,j,k+1 − φi,j,k

h`
.

To compute Gcompφ at a coarse-fine interface, we interpolate values for φ using both
coarse- and fine-level values. We use a quadratic interpolation similar to that used in

8

[Min94] and adopted by [MC96, Min96, ABC+98] to compute φI . For details of the
quadratic coarse-fine interpolation, refer to the Chombo documentation, particularly for
the class QuadCFInterp.
The level-operator gradient G` is defined by extending Gcomp (which is only defined

on Ω`,∗
valid) to all faces in Ω

`,∗. Away from ∂Ω`,∗ we use the grid-interior stencil (2.9), while
on interfaces with a coarser level ` − 1, the interpolation operator I(φ`, φ`−1) is used to
compute ghost cell values to be used in (2.9).
The composite gradient on level `, Gcomp,`, is dependent on level ` and coarse-level

(` − 1) data: Gcomp,`(φ`, φ`−1). Likewise, the level-operator gradient can be written
G`(φ`, φ`−1).

Laplacian

The Laplacian is defined as the divergence of the gradient:

Lcompφcomp = DcompGcompφcomp (2.10)

L`φ` = D`G`φ`. (2.11)

On the interiors of grids, (2.10) and (2.11) reduce to the normal five-point second-order
discrete Laplacian. On the fine side of a coarse-fine interface, the interpolation operator
I fills ghost-cell values which are used in the five-point stencil. On the coarse side of a
coarse-fine interface, (2.10) becomes:

Lcomp,`φ = L`φ` +D`
R(δGφ

`+1)

δGφ`+1 = 〈G`+1φ〉 −G`φ`.

2.4 AMR timestepping

The algorithm is structured as a series of recursive updates on a single refinement level.
The basic steps when updating level ` are:

1. Perform single-level update on level `, including application of a level ` projection
to the velocities to ensure that they are approximately divergence-free (π` is the
approximation to the pressure computed using the level projection),

2. Initialize/update flux registers with coarse-fine interface information,

3. Recursive calls to update finer levels nref times with ∆t`+1 = ∆t`

n`
ref

,

4. Synchronize composite multilevel solution.

At the beginning of a coarsest-level (` = 0) update, all levels in the AMR hierarchy are at
the same time t0. At the end of the recursive timestep for level 0, all levels in the AMR
hierarchy have been advanced to time t0 +∆t0.

9

2.5 Multilevel Algorithm

In this section, we describe the complete recursive algorithm used to advance the level
` solution from time t` to time t` + ∆t`. Implicit in this recursive algorithm is the
subcycled advance of all finer levels to time t`+∆t`, including all necessary synchronization
operations.

2.5.1 Variables

We start the level ` advance with the solution at time t`, which includes the velocity field
~u`(~x, t`) = (u`, v`)T , the freestream preservation scalar Λ`(~x, t`), and the staggered-grid
freestream preservation correction ~up from the most recent synchronization step, which
has been extended to the invalid regions on level ` with 〈~u`+1p 〉.
We also need flux registers to contain coarse-fine matching information. δ~V ` contains

the normal and tangential (to the coarse-fine interface) momentum fluxes across the
coarse-fine interface between level ` and the coarser level δΛ` contains the fluxes of the
advected scalar Λ.

2.5.2 Level Advance

The basic update on a single AMR level updates the solution on level ` from time t`

to time t` + ∆t`. Any coarser levels have already been updated from time t`−1 to time
t`−1+∆t`−1, so boundary conditions for the level ` advance may be taken from the coarser
level, since t`−1 ≤ t` < (t` + ∆t`) ≤ (t`−1 + ∆t`−1). In cases where a time is specified
for the coarse-level data, this data will be computed by linear interpolating in time using
the coarse-level solutions at times t`−1 and t`−1 +∆t`−1.

1. Compute Advection Velocities
First, a set of staggered-grid advection velocities ~uAD,` is computed.

(a) Compute upwinded face-centered velocities
Before the tracing and upwinding steps are performed, we fill a ring of ghost
cells around each grid which is wide enough to complete the tracing stencil for
all interior cells with appropriate solution values for ~u(t`). If a level ` ghost
cell lies in the interior of another level ` grid, solution values are copied from
the other grid. If the ghost cell lies over a coarser grid’s valid region, the
coarse-grid solution ~u`−1 is interpolated in time and space, using conserva-
tive linear interpolation. Once ghost cells have been filled, computation of
the staggered-grid ~uhalf,` can be carried out. For the viscous source term in
the tracing step, however, we use a quadratic interpolation coarse-fine bound-
ary condition: ~u`(t`) = I(~u`(t`), ~u`−1(t`)). At physical boundaries, inviscid
(slipwall) boundary conditions are used for the tracing step, while viscous (no-
slip-wall) boundary conditions are used when computing the viscous source.

10

We follow the approach detailed in the Chombo AMRGodunov documentation
for a general hyperbolic transport equation with a source term S:

dW

dt
+

D−1∑

d=0

Ad(W)
dWd

dxd
= S

In the case of the Navier-Stokes momentum equation, W is the velocity, the
advection velocity is is Ad, and the source term is Gπ + νL~u.

First, we compute approximate face-centered advection velocities ~uface by av-
eraging the cell-centered ~un to faces:

~uface = AvC→E~un.

Next, we use Taylor expansions to extrapolate normal velocities to cell faces at
time tn + ∆t

2
, using (2.1) to replace the time derivative in the expansion. For

the d−component of velocity on the x−direction faces (i + 1
2
e0), the Taylor

expansion from the left state becomes:

ũ
L,n+ 1

2

i+ 1
2
e0,d

= uni +min[
1

2
(1− unormi,0

∆t

h
),
1

2
](ux)i,d

−∆t

2h

D−1∑

s=0,s6=0

uni,s(ūs)i,d +
ν∆t

2
(L`u+ F)i,d

unormi,d =
1

2
(uface

i+ 1
2
e0,d

+ u
face

i− 1
2
e0,d

)

where (ux)i,d is the limited undivided centered difference in the x−direction
of the d−component of velocity, and (ūs)i,d is the undivided (and unlimited)
upwinded transverse difference in the s direction of the d−component:

(ūs)i,d =

{
uni,d − uni−es,d if uni,s > 0,

uni+es,d − uni,d if uni,s < 0.

The sum
∑D−1

s=0,s6=0 is over all transverse directions. Computing the right state
is similar:

ũ
R,n+ 1

2

i+ 1
2
e0,d

= uni+e0,d +max[
1

2
(−1− unormi+e0,0

∆t

h
),−1

2
](ux)i+e0,d

−∆t

2h

D−1∑

s=0,s6=0

uni+e0,s(ūs)i+e0,d +
ν∆t

2
(L`u+ F)i+e0,d.

Then, we choose the upwind state; for the x−direction faces we choose like
this:

u
n+ 1

2

i+ 1
2
e0,d

=





ũ
L,n+ 1

2

i+ 1
2
e0,d

ifu
face

i+ 1
2
e0,0

> 0

ũ
R,n+ 1

2

i+ 1
2
e0,d

ifu
face

i+ 1
2
e0,0

< 0

1
2
(ũ

L,n+ 1
2

i+ 1
2
e0,d

+ ũ
R,n+ 1

2

i+ 1
2
e0,d

) ifu
face

i+ 1
2
e0,0

= 0

11

The pressure term is not included in this extrapolation because these velocities
are projected with a face-centered projection.

Extrapolation of normal y- and z−direction face velocities is similar.
(b) Project Advection Velocities

Then, ~uhalf,` is projected using a staggered-grid (MAC) projection to ensure
that the advection velocities are divergence-free:

L`φ` = D`~uhalf,` (2.12)

φ` = I(φ`,
∆t`

2
π`−1).

The coarse-fine boundary condition on φ is designed to match φ` with the
coarse-level pressure field. Then, the velocity field is corrected:

~uhalf,` = ~uhalf,` −G`φ` (2.13)

φ` = I(φ`,
∆t`

2
π`−1).

Finally, ~up from the most recent synchronization is added to correct for
freestream preservation errors. For a more detailed explanation of the
freestream preservation technique used here, see [MC00].

~uAD,` = ~uhalf,` + ~up.

2. Scalar Advection
Once advection velocities ~uAD,` have been computed, the scalar Λ` can be up-
dated. As in the previous step, a ring of ghost cells around each grid is filled by
either copying values from other level ` grids or by performing a conservative linear
interpolation in time and space of coarse-level data. Then, computation of the
advective fluxes ~FΛ,`, as well as the updated scalar Λ`(t` +∆t`), can be computed
on a grid-by-grid basis. The update equation used is

Λ`(t` +∆t`) = Λ`(t`)−∆t`D`(~uADΛhalf,`).

First, we predict face-centered upwinded values for Λn+ 1
2 in the same way as for

the velocity predictor (step 1a). As before, we compute values for Λ̃L,n+ 1
2 and

Λ̃R,n+ 1
2 , and then choose the upwind value based on the local sign of ~uhalf . In the

x−direction:

Λ̃
L,n+ 1

2

i+ 1
2
e0 = Λn

i,j +min[
1

2
(1− uADi,0

∆t

h
),
1

2
](Λx)i −

∆t

2h

D−1∑

s=0,s6=0

utani,s (Λ̄s)i.

12

As before,

utani,s =
1

2
(vhalf

i+ 1
2
es,s

+ u
half

i− 1
2
es,s

)

(Λ̄s)i =

{
Λn

i − Λn
i−es if utani,s > 0

Λn
i+es − Λn

i if utani,s < 0.

For the right state:

Λ̃
R,n+ 1

2

i+ 1
2
e0 = Λn

i+ebold0+max[
1

2
(−1−uADi

∆t

h
),−1

2
](Λx)i+e0−∆t

2h

D−1∑

s=0,s6=0

utani+e0,s(Λ̄s)i+e0

Then, choose the upwind state:

Λ
n+ 1

2

i+ 1
2
e0 =





Λ̃
L,n+ 1

2

i+ 1
2
e0 ifu

face

i+ 1
2
e0,0

> 0

Λ̃
R,n+ 1

2

i+ 1
2
e0 ifu

face

i+ 1
2
e0,0

< 0

1
2
(Λ̃

L,n+ 1
2

i+ 1
2
e0 + Λ̃

R,n+ 1
2

i+ 1
2
e0,0

) ifu
face

i+ 1
2
e0,0

= 0

Computing Λn+ 1
2 on the y− and z−faces is similar. Then, we compute the fluxes:

F
Λ,d

i+ 1
2
ed = uAD

i+ 1
2
ed,d

Λ
n+ 1

2

i+ 1
2
ed (2.14)

Finally, the updated state Λn+1 can be computed using a conservative update equa-
tion:

Λn+1
i = Λn

i −∆t
D−1∑

d=0

(FΛ,d
i+ 1

2
ed − F

Λ,d

i− 1
2
ed)

h
.

3. Predict ~uhalf

Using the advection velocities ~uAD,`, the transverse components of the staggered-
grid velocity field ~uhalf,` are computed, using the same coarse-fine boundary condi-
tions with the level `− 1 solution as in the original tracing step.

First, we re-predict face-centered velocities as in the advection-velocity computa-
tion, this time using ~uhalf rather than AvC→E(~un), which was used for the ad-
vection velocity computation. We re-use the already-computed normal velocities
~uhalf as predicted velocities. So, we only compute the tangential face-centered pre-
dicted velocities. In this case, however, we include the pressure gradient – for the
d−component of velocity on the s−direction face (recall that we only recompute
tangential velocities, so s 6= d),

u
half

i+ 1
2
es,d

= u
half

i+ 1
2
es,d
− (Gφ)i+ 1

2
es,d.

= u
half

i+ 1
2
es,d
− φi+ed+es + φi+ed−esφi−ed+es − φi−ed−es

4h
.

13

4. Compute Advective Terms
Using ~uhalf , we compute an approximation of the advection term [(~u · ∇)~u]n+

1
2 .

Note that we use convective differencing for this step, since the advection velocities
are not generally discretely divergence-free, due to the effects of the freestream
preservation correction.

To compute the advective terms, first compute a cell-centered advection velocity
~uAD−CC :

~uAD−CC = AvE→C~uAD.

Then, for the d−direction momentum equation, the advective term is:

[(~u · ∇)u]
n+ 1

2

i,d =
D−1∑

s=0

uAD−CC
i,s

(uhalf
i+ 1

2
es,d
− u

half

i− 1
2
es,d

)

h
(2.15)

Note the distinction between ~uAD, the advecting velocity, and ~uhalf , the advected
velocity.

5. Compute ~u∗,`

The intermediate velocity field ~u∗,` is then computed using the second-order TGA
scheme. The quantities a, r1, and r2 are the values suggested in [TGA96]:

a = 2−
√
2− ε,

discr =
√
a2 − 4a+ 2,

r1 =
2a− 1

a+ discr
,

r2 =
2a− 1

a− discr
,

where ε is a small quantity (we use 10−8).

First compute the diffused source term ~f ∗. This differs from the algorithm presented
in [TGA96] because our source term is centered at the half time t`+ ∆t`

2
, while the

source term in the original reference is centered at the time t`. When computing ~f ∗,
we use a higher-order extrapolation coarse-fine boundary condition on ~f . Physical
boundary conditions are the viscous velocity boundary conditions.

~f = [(~u · ∇)~u]
n+ 1

2

i + ~FH −GCC,`πn−
1
2 (2.16)

~f ∗ = ∆t(I + (
1

2
− a)∆tνL`)~f

Then, we compute the intermediate quantity ~u`e:

(I − r2∆tνL
`)~u`e = ~u`(t`) + (1− a)∆tνL`~u`(t`) + ~f ∗

14

At coarse-fine interfaces, we use a quadratic interpolation boundary condition to
compute ~u`e: ~u

`
e = I(~u`e, ~u

`−1(t`+(1−r1)∆t`), along with viscous velocity boundary
conditions at physical boundaries. For details of the quadratic coarse-fine interpo-
lation used, see the Chombo documentation for the QuadCFInterp class.

Finally, we solve for the approximation to the ~u`(t` +∆t`) velocity field ~u∗:

(I − r1∆tνL
`)~u∗ = ~ue

The coarse-fine boundary condition for this solve is quadratic interpolation: ~u∗,` =

I
(
~u∗,`, ~u`−1(t` +∆t`)

)

6. Initialize/Update Momentum and Advective Flux Registers
Once the updates have been completed, the appropriate flux registers are updated
to contain the mismatches between coarse and fine advective and momentum fluxes.
Note that the pressure gradient term is present in ~f :

• if (` < `max)

δ~Λ`+1 = −~uAD · Λhalf

δ~V `+1 = −~uAD · ~uhalf − (
1

2
− a)ν∆t`G`(~f)

+νG`(r1~u
∗ + r2~ue + (1− a)~u(t`)) on ∂Ω`+1

• if (` > 0)

δ~Λ` = δ~Λ` +
1

nref
〈~uAD · Λhalf〉

δ~V ` = δ~V ` +
1

nref
〈~uAD · ~uhalf + (

1

2
− a)ν∆t`G`(~f)

−νG`(r1~u
∗ + r2~ue + (1− a)~u(t`))〉 on ∂Ω`

7. Project ~u∗,` → ~u`(t` +∆t`)
To complete the single-level portion of the level update, the intermediate velocity
field ~u∗,` is projected using a level projection. We solve for the pressure, instead of
the update to the pressure, so we first remove the lagged pressure gradient used to
compute ~u∗:

~u∗,` = ~u∗,` +∆t`GCC,`π`

Then, compute the RHS for the projection:

RHS =
1

∆t
DCC,`(~u∗,`)

When computing the divergence of the velocity for the level projection, we use a
quadratic coarse-fine boundary condition on the velocity field: ~u∗ = I(~u∗, ~u`−1(t`+

15

∆t`) +∆t`GCC,`−1π`−1) Subtraction of Gπ from the coarse level velocity accounts
for the fact that u∗ is actually ~u−∆t`Gπ.

Then, solve for the level pressure π

L`π` = RHS (2.17)

π` = I(π`, π`−1),

where π`−1 in the coarse-fine boundary condition is the most recent π`−1, which is
treated as piecewise constant in time throughout the subcycled level ` timesteps.
The correction is then applied to the velocity field:

~u`(t` +∆t`) = ~u∗,` −∆tG`π`

π` = I(π`, π`−1).

2.5.3 Recursive update of finer levels

Once the single-level advance has been completed, if a finer level ` + 1 exists, it is then
updated n`ref times with a timestep of ∆t

`+1 = 1
n`

ref

∆t`. This brings all levels finer than

level ` to time t` +∆t`.

2.5.4 Synchronization

If a finer level ` + 1 exists, we now synchronize level ` with all finer levels. We denote
the time at which this synchronization takes place as tsync = t`+∆t`. The coarsest level
which has reached tsync is denoted as `base; all levels finer than and including `base are
synchronized at once. In practice, we check to see if the current level has reached the new
time of the coarser level, (t`−1 + ∆t`−1). If so, we drop down to the coarser level. We
also denote ∆t`base as ∆tsync, the time interval over which the synchronization is taking
place.

1. Refluxing and Averaging fine solution
First, the finer-level solutions are averaged down to underlying coarse grids and a
refluxing operation is performed to correct coarse-level fluxes. For the passively-
advected scalar Λ, this is simply the refluxing correction for conservation:

[Λ]` := [Λ]` −∆t`DR(δ[Λ]
`+1)

For the case of small viscosity, the velocity may be corrected explicitly in the same
manner:

~u(tsync) := ~u(tsync)−∆t`DR(δ~V
`+1)

16

However, in the more general case, the refluxing must be implicit for stability. In this
case, we compute a correction with a multilevel elliptic solve for all levels ` ≥ `base:

(I − ν∆t`baseLcomp)δ~u = ∆t`DR(δ~V
`+1)

δ~u`base = I(δ~u`base , 0).

Note that the scaling factor for the right-hand-side varies by level, while ∆tsync is
used as the coefficient for all levels for the elliptic solve. The correction is added to
the velocity field for all levels ` ≥ `base:

~u = ~u+ δ~u

2. Composite Projection
Then, a multilevel sychronization projection is applied in the same way as in [MC00],
solving for the synchronization correction esync. The appropriate physical boundary
conditions for esync are the homogeneous form of the boundary conditions applied
to the level pressure π in the level projection. For solid walls, this is a homogeneous
Neumann boundary condition. First, solve for esync

LCompesync = DCC,Comp~u(tsync) for` > `base

Coarse-fine boundary conditions for esync are quadratic interpolation: e`base
s =

I(e`base
s ,∆t`basee`base−1

s)

Then, correct the velocity field:

~u = ~u−GCC,compes

The correction is then stored for future use by rescaling it to be a pressure:

esync =
1

∆t`base
esync

3. Freestream Preservation Correction
Finally, the freestream preservation correct ion ~up is computed, using the same
approach as in [MC00]. First, solve

Lcompe`Λ =
(Λ− 1)

∆t`base
η for ` ≥ `base

The coarse-fine boundary condition for eΛ is quadratic interpolation: e
` = I(e`Λ, 0)

The correction is then computed and stored for future use:

up = GcompeΛ

17

2.6 Regridding and Pressure Initialization

Before the initial time step for a level `, we will need to come up with initial values for
π. This will also be necessary after regridding. After regridding, we will also need to
recompute ~up, the volume discrepancy correction, for the new grid configuration. We
will define `base as the finest unchanged level. Note that for the initial grid set-up and
initialization, `base would be -1. npasses is the number of passes we make in order to
initialize things. We have used npasses = 1. The pressure re-initialization step is similar
to a non-subcycled timestep.

2.6.1 Project new velocity field

First, the new velocity field is projected using the multilevel composite projection to ensure
that the new velocity field is divergence-free.

2.6.2 Compute level pressures π

Use a series of non-subcycled level advances with ∆̃t = ∆t`max

2
to compute the level

pressures π. In principle, since the level pressure is needed for an accurate computation
of ~u∗, this computation is performed iteratively, with npasses for the initialization in order
to compute π accurately. In practice, we have generally set npasses to be one, since the
initialization computation is expensive.
First, we compute ~̃u∗ as in a normal timestep, using the pressure gradient term if it

is available. For the face-centered projection of the advection velocities, if a coarse-level
π is not available, then we use a coarse-fine boundary condition of φ` = I(φ`, φ`−1).
Otherwise, all of the other boundary conditions for the initialization timesteps are the
same as are used in a regular advance.
Then, we project ~̃u∗ to compute π, first solving

L`π` =
1

∆̃t
DCC,`(ũ∗)

π` = I(π`, π`−1(t̃)

Then, ~̃u∗ is corrected for use as a boundary condition for any finer-level initialization:

~̃unew := ~̃u∗ − ∆̃tGCC,`π`

2.6.3 Initialize ~up

To initialize the freestream-preservation correction, we first initalize Λ in any newly-refined
regions using conservative linear interpolation. Then, we solve for eΛ:

Lcompe`Λ =
η

∆t`base
(Λ− 1) for ` ≥ `base,

18

e`Λ = I(e`Λ, 0),

and compute and store the correction field:

~up = GcompeΛ

Note that this need not be done at the initial step, since it is assumed that no freestream
preservation errors have been introduced yet, and ~up may be set to 0.

2.7 Pseudocode Description of Algorithm

2.7.1 Notation

~uni (uni , v
n
i) – cell centered velocities at time n

~u
half
G (u

n+ 1
2

i+ 1
2
,j
, v

n+ 1
2

i,j+ 1
2

) – Godunov predicted velocites (unprojected)

~uhalf MAC projected ~uhalfG = ~u
half
G −∇φ

~u
half
ad advection velocity = ~uhalf + ~up
~up ∇eΛ – velocity correction due to volume discrepancy stuff
~F body force on fluid (~FH is centered at the half-time)
φ MAC correction

π
n− 1

2

i pressure from level projection
es pressure correction from sync projection
eΛ correction due to volume discrepancy stuff
[s]ni Advected scalars: ρ,Λ, s, etc
Λ advected scalar for freestream preservation – initially = 1

δ[s]`, δ~V ` Hyperbolic flux registers for level ` (defined on fine level)
for scalars and velocities

G` face-centered (MAC) gradient on level `.
D` face-centered (MAC) divergence on level `
L` Laplacian on level ` (same as Lnf in previous implementations)
Gcomp composite face-centered (MAC) gradient
Dcomp composite face-centered (MAC) divergence
Lcomp composite Laplacian
GCC,` cell-centered gradient on level `
DCC,` cell-centered divergence on level `
GCC,comp composite cell-centered gradient
DCC,comp composite cell-centered divergence
ν coefficient of viscosity

a coefficients for viscous solve: a = 2−
√
2− ε

r1 coefficient for viscous solve: r1 =
2a−1

a+(a2−4a+2)
1
2

r2 coefficient for viscous solve: r2 =
2a−1

a−(a2−4a+2)
1
2

19

2.7.2 Timestep for level `

At time t = tn, we have ~uni ,Λ
n
i , ~up. For a level `, the timestep looks like:

1. Compute advection velocities:

(a) Predict ~uhalfG = u
n+ 1

2

i+ 1
2
ed,d

(viscous Godunov Box)

C/F BC: Conservative interpolation from level `− 1 (FilPatch) for tracing
C/F BC: ~u`(t`) = I(~u`(t`), ~u`−1(t`)) for viscous source term L`~u`(t`).
Physical BC: inviscid slipwall for tracing
Physical BC: viscous BC for viscous source term

(b) MAC projection: Lφ = D`~u
half
G ,

C/F BC: φ` = I(φ`, ∆t
2
πn−

1
2
,`−1) on ∂Ω` − ∂Ω

Physical BC: Homogeneous Neumann for φ.

(c) Correct predicted velocities: ~uhalf = ~u
half
G −G`φ

C/F BC: φ` = I(φ`, ∆t
2
πn−

1
2
,`−1) on ∂Ω` − ∂Ω

Physical BC: Quadratic extrapolation of φ

(d) ~uhalfAD = ~uhalf + ~up
(~up = GcompeΛ)

2. Advance advected quantities:

(a) Trace states using ~uhalfAD : Λ
half ≈ Λ

n+ 1
2

faces

C/F BC: Conservative interpolation (FilPatch)

(b) Advance: Λn+1
i = Λn

ij −∆tD` · (~uAD · Λhalf)

(c) Update flux registers:

• if (` < `max) δΛ`+1 = −~uhalfAD · Λhalf on ∂Ω`+1

• if (` > 0) δΛ` = δΛ` + 1
nref
〈~uhalfAD · Λhalf〉 on ∂Ω`

3. Compute ~u∗:

(a) As in (2a), trace ~uhalf

(b) Compute diffused source term:
~f ∗ = [−AvE→C(~uhalfAD) · (D`~uhalf) + ~FH −GCC,`πn−

1
2]

~f = ∆t(I + (1
2
− a)∆tνL`) ~f ∗

C/F BC: HO extrap for ~f ∗

PhysBC: viscous velocity BC’s?

20

(c) intermediate solve:

(I − r2∆tνL
`)~u`e = ~u`(t`) + (1− a)∆tνL`~u`(t`) + ~f

C/F BC: ~u`e = I(~u`e, ~u
`−1(t` + (1− r1)∆t

`)
PhysBC: viscous Velocity BC’s

(d) solve for u∗:
(I − r1∆tνL

`)~u∗ = ~u`e

C/F BC: ~u∗,` = I
(
~u∗,`, ~u`−1(t` +∆t`)

)

(e) Update velocity flux registers

• if (` < `max) δ~V `+1 = −~uhalfAD · ~uhalf
− (1

2
− a)ν∆t`G`(f ∗)

+ νG`(r1~u
∗ + r2~ue + (1− a)~u(t`)) on ∂Ω`+1

• if (` > 0) δ~V ` = δ~V ` + 1
nref
〈~uhalfAD · ~uhalf

+ (1
2
− a)ν∆t`G`(f ∗)

− νG`(r1~u
∗ + r2~ue + (1− a)~u(t`)) 〉 on ∂Ω`

4. Project ~u∗ ⇒ ~u`(t` +∆t`)

(a) Solve L`(π`) = 1
∆t
DCC,`

(
~u∗ +∆tGCC,`π`

)

C/F BC: π` = I(π`, π`−1) on ∂Ω` − ∂Ω
C/F BC: ~u∗ = I(~u∗, ~u`−1(t` +∆t`) + ∆t`GCC,`−1π`−1)
Physical BC: Homogeneous Neumann on π`

(b) Update level velocity: ~unew,` = ~u∗,` −∆tGCC,`π`

C/F BC: π` = I(π`, π`−1) on ∂Ω` − ∂Ω

5. Advance level `+ 1 nref times with ∆t`+1 = 1
nref

∆t`.

6. Synchronization: if (` < `max)

(a) Reflux for conservation:

• Λ` = Λ` −∆t`DR(δΛ
`+1)

• Solve: (I − ν∆t`baseLcomp)δ~u = ∆t`DR(δ~V
`+1)

(b) Sync projection to satisfy elliptic matching conditions:
CC sync solve: `base = coarsest level at time t = tnew. This now looks a lot
like the initial velocity projection

i. RHS = DCC,comp~unew:
For ` = `max, `base,−1

21

A. ~u`face = AvC→E(~u`)

C/F BC: ~u` = Extrap(~u`) on ∂Ω`

B. RHS` = D`~u`face
C. Update flux registers:

• if (` < `max) δ~u`+1 = δ~u`+1 − (∆x`)~u`Face on ∂Ω`+1

• if (` > 0) δ~u` = nref∆x
`〈~u`Face〉 on ∂Ω`

D. if (` < `max) RHS` = RHS` +DR(δ~u
`+1)

ii. Composite Solve: LCompes = RHS

Physical BC: Homogeneous Neumann
C/F BC: e`base

s = I(e`base
s ,∆t`basee`base−1

s) on ∂Ω`base

iii. Correct Velocities: ~u = ~u−GCC,compes
C/F BC: e`base

s = I(e`base
s ,∆t`basee`base−1

s) on ∂Ω` − ∂Ω
Physical BC: Quadratic Extrapolation of es

• for ` = `max, 0,−1
A. ~u` = ~u` −GCC,compes

B. Store correction for future use: Ges =
1

∆tsyncG
CC,compes

C. es =
1

∆t`base
es

(c) Mac Sync:

i. Solve Lcompe`Λ = (Λ−1)

∆t`base
η for ` ≥ `base

C/F BC: e` = I(e`Λ, 0) on ∂Ω`

ii. Compute and store correction for future use:
up = GcompeΛ

2.7.3 Regridding and Pressure Initialization

Before the initial time step for a level `, we will need will need to project the velocity field
to ensure that it is divergence-free, and to compute initial values for π. This will also
be necessary after regridding. After regridding, we will also need to recompute ~up, the
volume discrepancy correction, for the new grid configuration. We will define `base as the
finest unchanged level. Note that for the initial grid set-up and initialization, `base would
be (-1). npasses is the number of passes we make in order to initialize things. We have
used npasses = 1.

1. Initial Velocity Projection:

(a) For ` = `max, 0,−1
i. ~u`Face = AvC→E(~u`)
C/F BC: ~u` = I(~u`, ~u`−1) on ∂Ω`

ii. RHS` = DCC,`~u`Face

22

iii. Update flux Registers:

• if (` < `max) δ~u`+1 = δ~u`+1 − (∆x`)~u`Face on ∂Ω`+1

• if (` > 0) δ~u` = nref∆x
`〈~u`Face〉 on ∂Ω`

iv. if (` < `max) RHS` = RHS` +DR(δ~u
`+1)

(b) Composite Solve: LCompφ = RHS

Physical BC: Homogeneous Neumann

(c) Correct Velocities: ~u = ~u−GCC,Compφ

C/F BC: φ` = I(φ`, φ`−1) on ∂Ω` − ∂Ω
Physical BC: Quadratic Extrapolation of φ

• for ` = `max, 0,−1
i. ~u` = ~u` −GCC,compφ

(d) Average Down for consistency: ~u` = Avg(~u`+1) on Cn`
ref

(Ω`+1)

2. Initialize pressure fields:
for n = 1, npasses:

(a) ∆̃t = ∆t`max

2

(b) For ` = `base + 1, `max

i. Compute ũ∗ as in normal timestep (only without pressure corrections.)
C/F BC (for MAC): φ` = I(φ`, φ`−1) if n = 1

C/F BC (for MAC): φ` = I(φ`, ∆̃t
2
(π`−1)) otherwise

ii. Solve L`π` = 1

∆̃t
DCC,`(ũ∗)

C/F BC: π` = I(π`, π`−1(t̃+ e`−1s)
Physical BC: Homogeneous Neumann

iii. Correct ~̃u∗: ~̃unew = ~̃u∗ − ∆̃tGCC,`π`

C/F BC: π` = I(π`, π`−1 + e`−1s) on ∂Ω` − ∂Ω

(c) If (`base > −1)
i. Compute ũ∗

`base
as in normal timestep (this time using pressure correc-

tions)

ii. Solve L`π̃`base = 1

∆̃t
DCC,`(ũ∗

`base
)

C/F BC: ~̃u∗ = I(~̃u∗, ~̃u
`−1

(t` +∆t`) + ∆t`GCC,`−1π`−1)
C/F BC: π̃`base = I(π̃`base , π`base−1(t̃)) on ∂Ω`base − ∂Ω
Physical BC: Homogeneous Neumann

iii. Correct ~̃u∗: ~̃unew = ~̃u∗ − ∆̃tGCC,`π`

C/F BC: π` = I(π`, π`−1) on ∂Ω` − ∂Ω

3. Volume Discrepancy initialization (if not initial step)

23

(a) Solve Lcompe`Λ = (Λ−1)

∆t`base
η for ` ≥ `base

C/F BC: e`Λ = I(e`Λ, 0) on ∂Ω`

(b) Store correction for future use: Ge`Λ = GcompeΛ

24

Chapter 3

System Architecture and
Component-level Design

3.1 Architecture Diagram

The incompressible Navier-Stokes code makes extensive use of the AMR time-dependent
infrastructure contained in the Chombo libararies. A basic schematic of the class re-
lationships between Chombo and AMRINS classes is depicted in Figure 3.1. For a more
detailed description of the inter-relationships between AMRINS and Chombo classes, see
the AMRINS-Chombo reference manual.

3.2 Data Design

The AMR Incompressible Navier-Stokes (AMRINS) code makes extensive use of the
Chombo C++ libraries. The important data structures used in this application are all
provided by Chombo, as are many of the utilities which facilitate implementations of
block-structured adaptive algorithms. For more detailed descriptions of these classes, see
the Chombo documentation [CGL+00].

3.2.1 Global Data Structures

The important variables in the AMRINS code are the velocities, and possibly the pressure
field. These variables are contained in container classes provided by Chombo.

Chombo Container Classes

A logically rectangular region in space is defined by a Box. Cell-centered data on an
individual Box is generally contained in an FArrayBox; face-centered data on a Box is
generally contained by a FluxBox, which contains one face-centered FArrayBox for each
space dimension.

25

u_old, u_new,
lambda_old,
lambda_new

: class LevelData<FArrayBox>

advance()
computeAdvectionVelocities()
advectScalar()
predictVelocities()
postTimeStep()
regrid()
postRegrid()
initializeGlobalPressure()
initializeLevelPressure()
initialData()
postInitialize()
computeDt()
computeInitialDt()

AMRNavierStokes

m_projector: class CCProjector

levelSolve()
levelSolveH()

LevelSolver

CCProjector

phi, pi,
e_sync,
e_lambda

: class LevelData<FArrayBox>

levelMacProject()
applyMacCorrection()
LevelProject()
correctCCVelocities()
doSyncOperations()
doSyncProjection()
computeVDCorrection()
doPostRegridOps()
initialVelocityProject()
initialLevelProject()

levelsolver: class LevelSolver

AMRSolver

solveAMR()
applyAMROperator()
applyAMROperatorHphys()

AMRLevel

AMR

amrlevels: class Vector<AMRLevel>

run()
timeStep()

Figure 3.1: Software configuration diagram for the AMRINS code showing basic relation-
ships between AMRINS classes and Chombo classes.

26

A set of disjoint Box’s (generally corresponding to all the grids at a single refinement
level) is defined by a DisjointBoxLayout. Data on a DisjointBoxLayout is generally
contained in a LevelData, which is a templated container class to facilitate computations
on disjoint unions of rectangles.
All of these classes are further documented in the Chombo documentation [CGL+00].

Time-dependent AMR

The basic structure for the code is provided by the Chombo AMRTimeDependent library.
The AMR class manages the global recursive timestep, along with initializing the hierarchy
of grids and other functionality involving data on more than one level of the AMR grids.
The AmrLevel class manages data and functionality for a single AMR level, including

the single-level advance. The AMRNavierStokes class is derived from the AmrLevel

class and contains the functionality specific to the Navier-Stokes solution algorithm.

3.2.2 Internal Software Data Structures

The AMRNavierStokes class contains the primary data fields necessary to update the
solution on one AMR level, in particular the old- and new-time velocity fields (~u(t`) and
~u(t` + ∆t`)), and the old- and new-time auxiliary scalar fields (Λ(t`) and Λ(t` + ∆t`).
Each AMRNavierStokes also contains a CCProjector class as a member object. This
CCProjector member contains all the data and functionality necessary for enforcing
the divergence constraint on the given AMR level, including the freestream preservation
correction. The CCprojector class contains the φ and π pressure fields, along with the
synchronization correction esync and the freestream preservation correction quantities eΛ
and ~up, as well as the methods used to compute and access these quantities.

3.3 Basic Design

In the Chombo time-dependent infrastructure, the AMR class manages the data on the
multilevel hiearchy and the subcycled timestepping, basic grid generation and regridding
operations, along with data input and output. The AMRLevel class is an abstract base
class which contains the data for a single level, along with the functionality for updating
the solution on a single level. For a detailed description of the AMR and AMRLevel classes,
see the Chombo documentation.
The AMRNavierStokes class is derived from AMRLevel and contains the data and

functionality for implementing the incompressible algorithm described in Chapter 2. This
includes managing the single-level update in Section 2.5.2, the specific synchronization
algorithm for the Navier-Stokes equations detailed in Section 2.5.4, and the initialization
steps in Section 2.6.
The AMRNavierStokes class uses the CCProjector class, which manages all of the

algorithm pieces which enforce the incompressibility constraint, including the face-centered

27

projection used in the advection velocity computation, the single-level and composite cell-
centered projections, and the freestream preservation correction. The CCProjector class
also contains all of the data used for these purposes (φ, π, eΛ, and ~up). In the current de-
sign, each AMRNavierStokes object contains a CCProjector object as a protected mem-
ber. Data flow between the AMRNavierStokes and CCProjector classes is fairly straight-
forward. Velocity fields which need to be projected are passed from the AMRNavierStokes
class to the associated CCProjector class, where the projection is performed and the ve-
locity field is corrected in place. In the case of the freestream preservation correction,
the composite Λ field is passed to the CCProjector::computeVDCorrection function,
where the freestream preservation correction is computed. Where the algorithm requires
a pressure field, gradients of the pressure field, or the freestream preservation correction,
these are supplied by public access functions of the CCProjector class.

3.4 The class AMRNavierStokes

• Real advance()

This function manages the entire single-level advance described in Section 2.5.2,
advancing the solution on the current AMR level ` (AMRNavierStokes::m level)
from time t` to time t` +∆t`. It does not advance finer levels or perform synchro-
nization. Returns the maximum safe timestep for the next level advance.

• void computeAdvectionVelocities(LevelData<FluxBox>& a_adv_vel) This
function, called by advance, manages the computation of the face-centered advec-
tion velocities (step #1 in Section 2.5.2). This includes the tracing step and the
calling the face-centered projection function (CCProjector::levelMacProject).
The freestream preservation correction is then added to the resulting face-centered
velocity field, and the advection velocity field ~uAD,` is returned.
Outputs:

– a_adv_vel – face-centered divergence-free advection velocities.

• void advectScalar(LevelData<FArrayBox>& a_new_scal,

LevelData<FArrayBox>& a_old_scal,

LevelData<FluxBox>& a_adv_vel,

LevelFluxRegister* a_crseFluxRegPtr,

LevelFluxRegister& a_fineFluxReg,

Real a_dt)

This function, called by advance, manages the scalar advection step (step #2 in
Section 2.5.2. The scalar at the new time, Λ`(t` +∆t`) is returned. Also, the flux
registers for Λ are updated.
Inputs:

– a_old_scal – scalar at old time

28

– a_old_scal – scalar at new time item a_adv_vel – face-centered advection
velocities

– a_dt – time step

Outputs:

– a_new_scal – scalar at new time (old time + ∆t).

– a_crseFluxRegPtr – flux register to store fluxes along the interface between
this level and the next coarser level

– a_fineFluxReg – flux register to store fluxes along the interface between this
level and the next finer level.

• void predictVelocities(LevelData<FArrayBox>& a_uDelU,

LevelData<FluxBox>& a_advVel)

This function, called by advance, manages steps # 3 and 4 in Section 2.5.2; it
handles the tranverse-velocity tracing step, and returns [(~u · ∇)~u]n+

1
2 . Also, flux

registers are incremented with the advective part of the fluxes.
Inputs:

– a_advVel – face-centered advection velocities

Outputs

– a_uDelU – avective term (approximation to [(~u · ∇)~u]n+
1
2).

• void computeUStar(LevelData<FArrayBox>& a_uStar)

This function, called by advance, manages step #5 in Section 2.5.2, setting up and
computing the two elliptic solves per velocity component necessary to do the viscous
update. The momentum flux registers are also updated with the viscous fluxes
computed during this process. Because the algorithms used for the viscous update
are generally applicable in a variety of contexts, the viscous updates computed in
this function will be factored out into a set of viscous solver classes in the next code
design cycle.
Inputs:

– a_uStar – ~uold +∆t[(~u · ∇)~u]n+
1
2 (advective update to velocity field)

Outputs:

– a_uStar – approximation to new-time velocity (including the viscous terms)

• void postTimeStep()

The AMRNavierStokes::postTimeStep function, called by AMR::timeStep func-
tion, manages the synchronization steps described in Section 2.5.4. This includes the
(implicit or explicit) refluxing steps, calling the CCProjector::doSyncOperations
function, and averaging fine-level data onto covered regions of coarser grids.

29

• void regrid(const Vector<Box>& a_new_grids)

This function, called by the AMR::regrid function, sets up the AMRNavierStokes
class after a regridding operation has modified the grids. Data storage is redefined
to fit the new grids, and data is filled in from existing grids or interpolated from
coarser grids to fill newly-refined regions.
Inputs:

– a_new_grids) – new grids for this level

• void postRegrid(int a_lBase)

This function, called at the end of the AMR::regrid function, finishes the ini-
tialization process after AMRNavierStokes::regrid has been called on all lev-
els. The initialization processm, described in Section 2.6, includes a compos-
ite projection of the newly initialized velocity to ensure that it is divergence-free
(CCProjector::initialVelocityProject), calling CCProjector::doPostRegridOps,
and calling AMRNavierStokes::initializeGlobalPressure.
Inputs:

– a_lBase – coarsest unchanged level in the regridding operation.

• void initializeGlobalPressure()

The AMRNavierStokes::initializeGlobalPressure function, called by the
AMRNavierStokes::postRegrid and AMRNavierStokes::postInitialize func-
tions, manages the pressure initialization steps described in Section 2.6.2. This
function is called from the base level for the regridding operation, and in turn calls
AMRNavierStokes::initializeLevelPressure for each newly initialized level.

• void initializeLevelPressure(Real a_currentTime, Real a_dtInit)

The AMRNavierStokes::initializeLevelPressure function manages the pres-
sure initialization described in Section 2.6.2 for a single AMR level. It essentially
performs a single-level timestep (similar to AMRNavierStokes::advance, comput-
ing ~u∗ and then projecting it to get an approximation to the pressure π.
Inputs:

– a_currentTime – current time of solution.

– a_dtInit – timestep to use for initialization timestep.

• void initialData()

This function, called by AMR::initialGrid, initializes the data on a single AMR
level. In particular, the freestream preservation marker quantity Λ is initialized to
1, and the initial velocity field is defined.

• void postInitialize()

This function, also called by AMR::initialGrid, is similar to the postRegrid

30

function, implementing the initialization process described in Section 2.6. It man-
ages the initial velocity projection (CCProjector::initialVelocityProject),
and calls the initializeGlobalPressure function. Since this function is called
at the initial time in the problem, it is assumed that there is no need to compute
a freestream preservation correction, since no freestream preservation errors have
been introduced yet.

• Real computeDt()

This function, called from AMR::timeStep and from AMRNavierStokes::computeInitialDt,
computes the timestep at which a given level may be advanced. It does this by com-
puting the maximum stable timestep based on an advective CFL condition, then
multiplies that timestep by the CFL number σ.

• Real computeInitialDt()

This function, called from AMR::setupForNewAMRRun, computes the timestep
which may be used for the initial timestep. In the current implementation, this
function calls AMRNavierStokes::computeDt, and then reduces the timestep by
a safety factor.

3.5 The class CCProjector

The CCProjector class encapsulates all the functionality related to enforcing the in-
compressibility constraint, including all single-level and composite projections, and the
functionality for the freestream preservation correction.
Member data of this class includes the correction for the advection-velocity projection

(φ), the pressure from the level projection π, the synchronization projection correction es,
and the data for the freestream preservation correction (eΛ and ~up).

• void levelMacProject(LevelData<FluxBox>& a_uEdge,

Real a_oldTime, Real a_dt)

Projects the face-centered advection velocities using a face-centered projection (step
1b in Section 2.5.2). Computes correction using a LevelSolve, then corrects the
velocities in place by calling CCProjector::applyMacCorrection. The velocity
field being projected is assumed to be at the half-time t` + 1

2
∆t`.

Inputs:

– a_uEdge – face-centered velocity field to project.

– a_oldTime – solution time at beginning of timestep (t`).

– a_dt – timestep (∆t`).

Outputs:

– a_uEdge – face-centered velocity field is corrected in place.

31

• void applyMacCorrection(LevelData<FluxBox>& a_uEdge,

Real CFscale)

Computes the face-centered gradient of the correction field φ and subtracts it from
the face-centered velocity field.
Inputs:

– a_uEdge – face-centered velocity field being corrected.

– a_CFscale – scaling of coarse-level pressure field for boundary conditions. In
general, this is set to 1

2
∆t`.

Outputs:

– a_uEdge – face-centered velocity field corrected in place.

• void LevelProject(LevelData<FArrayBox>& a_velocity,

LevelData<FArrayBox>* a_crseVelPtr,

const Real a_newTime, const Real a_dt)

Performs the single-level cell-centered projection (Step # 7 in Section 2.5.2) Com-
putes correction using a LevelSolve, then corrects velocities in place by calling
CCProjector::correctCCVelocities.
Inputs:

– a_velocity – cell-centered velocity field.

– a_crseVelPtr – pointer to coarser-level velocity field at same time as
a velocity. (if it exists).

– a_newTime – time at which velocity field is centered.

– a_dt – time step (∆t`).

Outputs:

– a_velocity – cell-centered velocity field corrected in place.

• void correctCCVelocities(LevelData<FArrayBox>& a_velocity,

const Real a_scale) const

Computes the cell-centered gradient of the level pressure π, then applies this cor-
rection to the cell-centered velocity field. ~u = ~u+ scale(G`π).
Inputs:

– a_velocity – cell-centered velocity field.

– a_scale – scaling to apply to G`π.

Outputs:

32

– a_velocity – cell-centered velocity field corrected in place.

• void doSyncOperations(Vector<LevelData<FArrayBox>* >& a_velocity,

Vector<LevelData<FArrayBox>* >& a_lambda,

const Real a_newTime, const Real a_dtSync)

Called from AMRNavierStokes::postTimeStep, this function allocates the AMR-
Solvers for the multilevel synchronization solves and then calls CCProjector::doSyncProjection
and CCProjector::computeVDCorrection. Inputs:

– a_velocity – cell-centered multilevel velocity field.

– a_lambda – multievel Λ field.

– a_newTime – time at which synchronization is being applied.

– a_dtSync – time step over which synchronization is being applied.

Outputs:

– a_velocity – cell-centered multilevel velocity field (synchronization projec-
tion is applied in place).

• void doSyncProjection(Vector<LevelData<FArrayBox>* >& a_velocity,

const Real a_newTime,

const Real a_dtSync,

AMRSolver& a_solver)

Called from CCProjector::doSyncOperations, this function performs the multi-
level synchronization projection (step #2 in Section 2.5.4), to ensure that the veloc-
ity field is divergence-free in a composite sense. This function uses the AMRSolver
class to do the multilevel elliptic solve.
Inputs:

– a_velocity – multilevel cell-centered velocity field.

– a_newTime – time at which velocity field is centered.

– a_dtSync – time step for coarsest level being synchronized.

– a_solver – AMRSolver to use for projection.

Outputs:

– a_velocity – velocity field projected in place.

• void computeVDCorrection(Vector<LevelData<FArrayBox>* >& a_lambda,

const Real a_newTime,

const Real a_dtSync,

AMRSolver& a_solver)

33

This function computes the freestrean preservation correction (step # 3 in Section
2.5.4), solving for eΛ and computing ~up which will be used to correct future advection
velocities.
Inputs:

– a_lambda – multilevel Λ field.

– a_newTime – time at which Λ is centered.

– a_dtSync – time step of coarsest level being synchronized.

– a_solver – AMRSolver object to use for elliptic solve.

• void doPostRegridOps(Vector<LevelData<FArrayBox>* >& a_velocity,

Vector<LevelData<FArrayBox>* >& a_lambda,

const Real a_dt, const Real a_time)

This function, called from AMRNavierStokes::postRegrid, calling the CCProjector::initialVelocityProject
function to ensure that the newly initialized post-regridding velocity field is
divergence-free, and then calling CCProjector::computeVDCorrection to re-
initialize the freestream-preservation correction.
Inputs:

– a_velocity – multilevel velocity field.

– a_lambda – multilevel Λ field.

– a_dt – timestep of coarsest level being re-initialized.

– a_time – current time.

Outputs:

– a_velocity – multilevel velocity field projected in place.

• void initialVelocityProject(Vector<LevelData<FArrayBox>* >& a_velocity,

AMRSolver& a_solver,

bool a_homogeneousCFBC = true)

This function applies a composite projection to a multilevel vector field and corrects
it in place to return a divergence-free vector field. If `base > 0, only levels ` ≥ `base
are corrected.
Inputs:

– a_velocity – multilevel cell-centered velocity field

– a_solver – AMRSolver to use for multilevel solves.

– a_homogeneousCFBC – if true, use a coarse correction boundary condition
set to 0 (only relevant if the base-level is not 0), which is the case for all
applications of this projection in the current algorithm.

34

Outputs:

– a_velocity – multilevel velocity field corrected in place.

• void doInitialSyncOperations(Vector<LevelData<FArrayBox>* >& a_vel,

Vector<LevelData<FArrayBox>* >& a_lambda,

const Real a_newTime,

const Real a_dtSync)

If we need to do the synchronization operations at initialization time (compute syn-
chronization correction esync and freestream preservation correction eΛ, this function
computes them.
Inputs:

– a_vel – multilevel cell-centered velocity field.

– a_lambda – multilevel Λ field.

– a_newTime – current time.

– a_dtSync – time step being used for initialization.

Outputs:

– a_vel – multilevel velocity field corrected in place.

• void initialSyncProjection(Vector<LevelData<FArrayBox>* >& a_velocity,

const Real a_newTime,

const Real a_dtSync,

AMRSolver& a_solver)

At this point, simply a wrapper around CCProjector::doSyncProjection.

• void initialLevelProject(LevelData<FArrayBox>& a_velocity,

LevelData<FArrayBox>* a_crseVelPtr,

const Real a_oldTime,

const Real a_newTime);

Called by AMRNavierStokese::initializeLevelPressure, performs the level
projection for the initial pressure computation.

3.6 Important Chombo functionality used in Navier-

Stokes computation

The AMRINS code relies heavily on the Chombo elliptic solvers, The AMRSolver class solves
an elliptic equation on a hierarchy of AMR levels, while the LevelSolver class solves
an elliptic equation on a single AMR level, but possibly with boundary condtions from a
coarser AMR level. These classes are in the Chombo AMRElliptic library.

35

• void LevelSolver::levelSolve(LevelData<FArrayBox>& phi,

const LevelData<FArrayBox>* phic,

const LevelData<FArrayBox>& rhs,

bool initializePhiToZero=true)

Do a multigrid-based elliptic solve on a single AMR level. This function is called
by CCProjector::levelMacProject, CCProjector::LevelProject, SpaceDim
times by AMRNavierStokes::computeUStar, and also by AMRNavierStokes::initializeLevelPressure.

• void AMRSolver::solveAMR(Vector<LevelData<FArrayBox> *>& a_phiLevel,

const Vector<LevelData<FArrayBox> *>& a_rhsLevel)

Do a multigrid-based composite elliptic solve over a set of AMR levels, possibly
only a subset of the entire AMR hierarchy (for example, synchronization solves with
`base > 0). The specific algorithm used is described in [CGL+00] This function
is called by AMRNavierStokes::postTimeStep (for the implicit refluxing step),
CCProjector::initialVelocityProject, CCProjector::computeVDCorrection,
and by CCProjector::doSyncProjection.

36

Chapter 4

User Interface Design

The AMRINS code is designed to be run from a command-line environment using an
inputs file which defines various options such as the problem size, number of refinement
levels, refinement ratios, etc. The inputs file is read by the code through the use of the
Chombo ParmParse utility, which is documented in the Chombo users document.
Also, a user will generally provide a FORTRAN subroutine which initializes the velocity

field to the initial conditions for the problem being run. Support is also provided for
defining an initial vorticity distribution, from which an initial velocity field is computed.
Depending on the verbosity level specified in the inputs file, the AMRINS code will

generally produce screen output detailing its progress through the run. In addition, if spec-
ified in the inputs file, hdf5 checkpoint files (for restarting) and plotfiles (for data analysis)
are produced at specified intervals. Plotfile formats are compatible with ChomboVis.
The general syntax for running the AMRINS code is as follows, where ns*.ex is the

executable file:
ns*.ex [inputs file]

4.1 User Interface Components – Input files

The input files used by the Navier-Stokes codes consist of single-line variable definitions,
in the format:
prefix.variableName = variableDefinition
The prefix is a way of segmenting the inputs file by the type of input data. In the

AMRINS example inputs file, there are four prefixes in use: main, ns, projection, and
physBC. The main prefix denotes inputs to the general problem scope, such as the number
of cells on the base grid, refinement ratios, etc. The ns prefix denotes inputs to the general
Navier-Stokes solver classes. The projection prefix is for inputs to the CCProjector
class (generally, these are not necessary, since the CCProjector class’s defaults should
be appropriate for most situations. Inputs to the projection class generally do things
like turning off the synchronization projection, tuning the coefficients for the freestream-
preservation solve, etc. The physBC inputs are used to define the physical boundary

37

condition types. If periodic boundary conditions are defined (in the main inputs), then
these will have no effect, since periodic boundary conditions are not considered to be
physical boundary conditions in Chombo.
The sample inputs file used for the vortex ring example used for evaluating the perfor-

mance of this code is in Figure 4.1. Note also that the # character denotes a comment,
and the rest of the line is skipped. A description of each of the lines in this file follows:

1. main inputs:

• max step – the maximum number of timesteps to compute
• max time – the maximum time to which the solution will be advanced . The
code will stop whenever it reaches max time or max step.

• num cells – the number of cells in the base (level 0) mesh in each coordinate
direction.

• max level – the maximum AMR level allowed in the computation.
• ref ratio – a list of the refinement ratios between levels. The first value is the
refinement ratio between level 0 and level 1, the second is the refinement ratio
between levels 1 and 2, and so on.

• regrid interval – the number of timesteps on each level between regridding.
• block factor – a grid-generation parameter which specifies the amount that
each box is guaranteed to be coarsenable. For example, a block factor of
8 means that each grid box (and therefore each level) is guaranteeed to be
coarsenable by at least a factor of 8. A larger block factor will produce “block-
ier” grids, which may cover the refined area less efficiently, but will also result
in grids with better multigrid performance.

• max grid size – a grid-generation parameter specifying the maximum allowable
length in any dimension of an individual grid box. Grid boxes larger than the
maximum size will be broken up into smaller boxes.

• fill ratio – a grid-generation parameter controlling how efficiently refined grids
will cover the tagged regions. A higher fill ratio means that fewer untagged
cells will be contained in the refined grids.

• grid buffer size – a grid-generation parameter specifying the required nesting
radius for proper nesting of refined grids.

• checkpoint interval – the number of level 0 timesteps between checkpoint files.
A value of -1 means that no checkpoint files are generated.

• checkPrefix – the string used as a base for the checkpoint filenames.
• plot interval – the number of level 0 timesteps between plot files. A negative
value means that no plot files are generated. A value of 0 means that plot
files are generated at the initial and final times. For any non-negative interval,
a plotfile will also be generated at the final step.

38

main.max_step = 10 #max number of timesteps to compute

main.max_time = 16.0 #stop time

main.num_cells = 32 32 48 #base level domain

main.max_level = 2

main.ref_ratio = 4 4 4

main.regrid_interval = 4 4

main.block_factor = 8

main.max_grid_size = 32

main.fill_ratio = 0.8

main.grid_buffer_size = 1

main.checkpoint_interval = 50

main.checkPrefix = chk.

main.plot_interval = 10

main.plotPrefix = plt.

main.cfl = 0.5

main.verbosity = 2 #higher number means more verbose

#main.gridfile = grids.dat.128

main.is_periodic = 0 0 1

ns.init_shrink = 1.0

ns.tag_vorticity = 1

ns.vorticity_tagging_factor = 0.005

#initial grids

ns.specifyInitialGrids = 0

#ns.initialGridFile = grids.init

ns.initVelFromVorticity = 1

ns.viscosity = 0.000001

ns.num_scalars = 0

#inputs to the projection

#projection.doSyncProjection = 1

#projection.applyFreestreamCorrection = 1

#projection.eta = 0.9

this is physical BC info

0 = solidWall, 1=inflow, 2=outflow, 3=symmetry, 4=noShear

physBC.lo = 4 4 4

physBC.hi = 4 4 4

Figure 4.1: Inputs file for vortex rings example39

• plotPrefix – the string used as a base for the plotfile filenames.
• cfl – The Courant-Friedrich-Lewy (CFL) number to use when computing
timesteps.

• verbosity – defines how much text output the run will generate. A higher
number results in more output about what the code is doing.

• gridfile – If a fixed hierarchy run is being done, this file contains the refined-grid
configuration to use. If this variable is defined, then no regridding will occur,
and the hierarchy of refined grids will be fixed for the length of the run.

• is periodic – A list of 0’s and 1’s which specifies whether to use periodic
boundary conditions in each direction. The first entry is the x-direction, the
second, the y-direction, and the third the z-direction (if in 3-D). A value
of 1 specifies a periodic boundary condition, while 0 specifies a non-periodic
boundary condition. The default is non-periodic boundary conditions.

2. ns inputs

• init shrink – the safety factor by which to multiply the initial timestep.
• tag vorticity – if 1, tag for refinement based on the magnitude of the vorticity.
• vorticity tagging factor – Regridding parameter. Cells will be tagged for re-
finement if the undivided vorticity (vorticity*dx) is greater than the vorticity
tagging factor.

• specifyInitialGrids – If this is true (1), then the initial grid configuratoin will
be specified (using the initialGridFile variable), but then adaptive regridding
will be done as the solution progresses.

• initialGridFile – if the specifyInitialGrids variable is 1, then this variable specifies
the file containing the initial grid configuration.

• initVelFromVorticity – if this variable is 1, then the initial velocity field is
initialized from an initial vorticity field (generally initialized in the INITVORT
subroutine in PROB F.ChF).

• viscosity – the kinetic viscosity ν of the fluid.
• num scalars – the number of additional passively advected and diffused scalars.
These scalars /footnotePhil, should I completely remove any sign of having any
advected/diffused scalars?. The default is 0.

3. projection inputs

• doSyncProjecton – if 1, then apply multilevel synchronization projection. De-
fault is 1 (apply the projection)

40

• applyFreestreamCorrection – if 1, then apply the freestream preservation cor-
rection to the face-centered advection velocities. The default is 1 (apply the
correction)

• eta – the scaling factor used when computing the freestream preservation
correction, and must be between 0 and 1. A larger value will result in a stronger
correction, which will correct freestream preservation errors more quickly. The
default is 0.9.

4. physBC inputs – the physBC inputs specify which physical boundary conditions to
use as a series of integers, one integer for each coordinate direction. The integers
correspond to physical boundary conditins as follows: 0 = solid wall boundary
conditions, 1 = inflow boundary conditions, 2 = outflow boundary conditions, 3 =
symmetry boundary conditions, and 4 = no-shear boundary conditions.

• lo – the boundary conditions to use on the low side of the domain in each
coordinate direction.

• hi – the boundary conditions to use on the high side of the domain in each
coordinate direction.

4.2 User Interface Components – FORTRAN files

Data initialization is generally done using a FORTRAN subroutine, which may be provided
by the user by editing or replacing the PROB F.ChF file in the executable directory. For
initializing the velocity field, there are two possiblities. The velocity may be initialized
directly, or a vorticity field may be initialized, and then a velocity field is computed
from the initial vorticity field. If a velocity field is being defined analytically, then the
INITVEL subroutine should be modified or replaced. If an initial vorticity field is being
specified, this is set in the INITVORT subroutine. For initialization from a vorticity field,
the “ns.initVelFromVorticity” variable in the inputs file must be set to 1 as well. The
PROB F.ChF file is compiled and linked along with the rest of the AMRINS code.

4.3 User Interface Components – Outputs

The AMRINS code generates hdf5 plotfiles which are readable with ChomboVis. Plot-
file generation is managed by the AMR::writePlotFile() function, which calls the
AMRNavierStokes::writePlotLevel and AMRNavierStokes::writePlotHeader func-
tions. The AMRNavierStokes::writePlotHeader function writes out hdf5 file configu-
ration information which is specific for the AMRINS application. The
AMRNavierStokes::writePlotLevel function manages the data output for a single
AMR level, making use of the Chombo hdf5 functionality in the BoxTools library.

41

The AMRINS code can also generate checkpoint files for restarting the compu-
tation. Checkpoint files generally contain more data than plotfiles, since they con-
tain all the data needed to restart a computation, including pressure data from the
CCProjector class. Checkpoint files are in hdf5 format, and are generated by the
AMR::writeCheckpointFile() function, which calls the
AMRNavierStokes::writeCheckpointHeader and AMRNavierStokes::writeCheckpointLevel
functions. The AMRNavierStokes::writeCheckpointHeader function write out neces-
sary configuration information to the checkpoint file, while the
AMRNavierStokes::writeCheckpointLevel function writes all the data for the AMR
level, and calls the CCProjector::writeCheckpointLevel function, which in turn
writes out data from the CCProjector class.

42

Chapter 5

Checklist

• General Architecture Items

1. Is the system environment defined, including hardware, software, and external
systems?

2. Does the architecture clearly differentiate the problem domain, the user in-
terface, task management, and data management? If not, are the reasons
explained and justified?

3. Does the architecture take into account the target environments? MPP? Clus-
ters?

4. Will the architecture accommodate any likely changes?

• General Design Items

1. Are all the major components described?
Yes, except for the components of the Chombo libraries, which are described
in [CGL+00].

2. Are there a sufficient number of diagrams and descriptions for all major aspects
of the design to be fully understood?
I think so, but what do you, the reader, think?

3. Has the dataflow among the components been described?
Yes; the dataflow between AMRNavierStokes and CCProjector is outlined.

4. Are all the major algorithms identified?
A pseudocode description of the algorithm is provided in 2.7. Elliptic solver
algorithms and other implementation details of Chombo classes may be found
in [CGL+00]

• Modularity and Component Design

43

1. Is the decomposition of system components logical and efficient?
Yes, although some refactoring of the AMRNavierStokes class is planned, in
order to make it more manageable in size and also to facilitate reuse of its
parts.

2. Are module/component boundaries well defined, including functional inter-
faces?
Yes.

3. Does the design minimize the number of component connections and interac-
tions
Yes. As mentioned above, some refactoring is planned, which will complicate
the number of components, and therefore the number of component interac-
tions, but this will be an enhancement.

4. Have all shared data and resources between components been described?
Yes.

• Dynamic System States

1. Area all significant system states/phases and events captured in the design?
To be honest, I think so, but I’m not completely sure what is meant by this
question.

• Data Structures

1. Are all major data structures described?

2. Is the conceptual view of composite data elements and objects documented?
This applies to hierarchical data structures where inheritance might be used.

• Functions and Routines

1. Are inputs to routines necessary and sufficient to perform the required opera-
tion?
Yes.

2. Do routines clearly state how the output is derived from input and shared
data?
Yes, routines are fairly extensively commented.

3. Are all outputs produced by the routine being used?
Yes.

• Is there a strategy described for handling

1. Special states? (e.g abnormal termination, error recovery, losing power, etc.)
Using the checkpoint/restart capability allows one to restart the code from
an intermediate point, in the event of a system failure. Also, assert’s are

44

used liberally in the code to attempt to catch implementation and algorithm
problems.

2. Failure of the system? (e.g. process termination, system recovery, etc.)
Same as #1.

3. Memory management? Does it include memory use estimates?
Yes, memory usage is tracked. Maximum memory usage and memory leaks
are reported.

4. Shared resource management? Are the modules that use the shared resources
indicated?
I don’t think this is applicable to this code, other than possibly the use of hdf5
for data output?

5. I/O? (file read/write, socket communication, user inputs, etc.)
Data output and restarting from a checkpoint are facilitated by the use of
hdf5. User inputs are generally in the form of an inputs file, which is processed
through the Chombo ParmParse utility.

45

Bibliography

[ABC+98] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Welcome. A
conservative adaptive projection method for the variable density incompressible
Navier-Stokes equations. Journal of Computational Physics, 142(1):1–46, May
1998.

[BC89] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydro-
dynamics. J. Comput. Phys., 82(1):64–84, May 1989.

[BCG89] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for
the incompressible Navier-Stokes equations. J. Comput. Phys., 85:257–283,
1989.

[CGL+00] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B. Ser-
afini, and B. Van Straalen. Chombo Software Package for AMR Applications
- Design Document. unpublished, 2000.

[Cho68] A. J. Chorin. Numerical solutions of the Navier-Stokes equations. Math.
Comp., 22:745–762, 1968.

[Col90] Phillip Colella. Multidimensional upwind methods for hyperbolic conservation
laws. J. Comput. Phys., 87:171–200, 1990.

[MC96] D. F. Martin and K. L. Cartwright. Solving Poisson’s equation using adaptive
mesh refinement. Technical Report UCB/ERI M96/66 UC Berkeley, 1996.

[MC00] D Martin and P Colella. A cell-centered adaptive projection method for the
incompressible Euler equations. J. Comput. Phys., 2000.

[Min94] Michael Minion. Two Methods for the Study of Vortex Patch Evolution on
Locally Refined Grids. PhD thesis, U.C. Berkeley, May 1994.

[Min96] Michael L. Minion. A projection method for locally refined grids. J. Comput.
Phys., 127(1):158–178, Aug. 1996.

[TGA96] E.H. Twizell, A.B. Gumel, and M.A. Arigu. Second-order, l0-stable methods
for the heat equation with time-dependent boundary conditions. Advances in
Computational Mathmatics, 6:333–352, 1996.

46

