00001 /* _______ __
00002 / ___/ / ___ __ _ / / ___
00003 / /__/ _ \/ _ \/ V \/ _ \/ _ \
00004 \___/_//_/\___/_/_/_/_.__/\___/
00005 */
00006 // CHOMBO Copyright (c) 2000-2004, The Regents of the University of
00007 // California, through Lawrence Berkeley National Laboratory (subject to
00008 // receipt of any required approvals from U.S. Dept. of Energy). All
00009 // rights reserved.
00010 //
00011 // Redistribution and use in source and binary forms, with or without
00012 // modification, are permitted provided that the following conditions are met:
00013 //
00014 // (1) Redistributions of source code must retain the above copyright
00015 // notice, this list of conditions and the following disclaimer.
00016 // (2) Redistributions in binary form must reproduce the above copyright
00017 // notice, this list of conditions and the following disclaimer in the
00018 // documentation and/or other materials provided with the distribution.
00019 // (3) Neither the name of Lawrence Berkeley National Laboratory, U.S.
00020 // Dept. of Energy nor the names of its contributors may be used to endorse
00021 // or promote products derived from this software without specific prior
00022 // written permission.
00023 //
00024 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00025 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
00026 // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
00027 // PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
00028 // OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00029 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
00030 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
00031 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
00032 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
00033 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00034 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00035 //
00036 // You are under no obligation whatsoever to provide any bug fixes,
00037 // patches, or upgrades to the features, functionality or performance of
00038 // the source code ("Enhancements") to anyone; however, if you choose to
00039 // make your Enhancements available either publicly, or directly to
00040 // Lawrence Berkeley National Laboratory, without imposing a separate
00041 // written license agreement for such Enhancements, then you hereby grant
00042 // the following license: a non-exclusive, royalty-free perpetual license
00043 // to install, use, modify, prepare derivative works, incorporate into
00044 // other computer software, distribute, and sublicense such Enhancements or
00045 // derivative works thereof, in binary and source code form.
00046 //
00047 // TRADEMARKS. Product and company names mentioned herein may be the
00048 // trademarks of their respective owners. Any rights not expressly granted
00049 // herein are reserved.
00050 //
00051
00052 #ifndef _BITSET_H_
00053 #define _BITSET_H_
00054
00055 //
00056 // Arch dependant setting for what a BITSETWORD should be
00057 // BITSETWORD is the smallest efficiently accessible memory
00058 // object. BITSETWORD_BITS is the size, in bits, of this object
00059 //
00060 // Later I can make this object use a Pool, and we can
00061 // avoid all the memory system call overhead for creation and
00062 // use placement new.
00063 //
00064
00065 #define BITSETWORD unsigned int
00066 const int BITSETWORDSIZE = 8*sizeof(unsigned int);
00067
00068 // BITSETWORDSIZE is no the same as sizeof(BITSETWORD). This is the number of bits, not chars
00069 #include <assert.h>
00070 #include <iostream>
00071
00072 using std::ostream;
00073
00074 class BitSetIterator;
00075
00077 /* stores a contiguous memory chunk and represents true with a 1 bit
00078 and false with a 0 bit.
00079
00080 example: 35 bits, set to true, BITSETWORDSIZE=8:
00081
00082 m_index = 5 (need at least 5 BITSETWORDS to hold that many bits)
00083 m_size = 35
00084
00085 +-------+-------+-------+-------+-------+
00086 1111111111111111111111111111111111111111
00087
00088 now, set bit 35 to 0
00089
00090 index = 35/BITSETWORDSIZE = 4 , hence, we are in the fourth BITSETWORD.
00091 mask = 35 - 4*BITSETWORDSIZE = 3 hence, we are in the third bit of the fourth word
00092
00093 now, we can use the masks:
00094 static BITSETWORD trueMasks[BITSETWORDSIZE]; //10000000, 01000000, 00100000, ....
00095
00096 word[index] = word[index] & ~trueMasks[mask] (~trueMasks[3] = 11101111)
00097
00098 now we have:
00099
00100 +-------+-------+-------+-------+-------+
00101 1111111111111111111111111111111111101111
00102 */
00103 class BitSet
00104 {
00105 public:
00107 BitSet();
00108
00110 BitSet(int bits, bool init);
00111
00113 void define(int bits, bool init);
00114
00116 BitSet(const BitSet& rhs);
00117
00119 BitSet& operator=(const BitSet& rhs);
00120
00122 ~BitSet();
00123
00124 // somewhat slow random access. Fast iterating done
00125 // with BitSetIterator
00126 bool operator[](int i) const;
00127
00128 /*
00129 logic operations
00130 */
00131
00133 void setTrue(int i); // set bit to 1
00134
00136 void setFalse(int i); // set bit to 0
00137
00139
00142 bool isEmpty() const;
00143
00145
00148 bool isFull() const;
00149
00151 int size() const;
00152 static int initialize();
00153
00154 int linearSize() const;
00155
00156 void linearIn(const void* const inBuf);
00157
00158 void linearOut(void* const a_outBuf) const;
00159
00160 // not for public, used by memory tracker.
00161 static long int bytes;
00162 static long int peak;
00163
00164 private:
00165 friend class BitSetIterator;
00166
00167 BITSETWORD* m_bits;
00168 int m_size;
00169 int m_length; //length of char array, not bit length
00170
00171 static BITSETWORD trueMasks[BITSETWORDSIZE]; //10000000, 01000000, 00100000, ....
00172 };
00173
00174 // somewhat slow random access. Fast iterating done
00175 // with BitSetIterator
00176 inline bool BitSet::operator[](int i) const
00177 {
00178 assert(i>=0);
00179 assert(i<m_size);
00180 int index = i/BITSETWORDSIZE;
00181 assert(index < m_length);
00182 int remainder = i-BITSETWORDSIZE*index;
00183 BITSETWORD tmp = m_bits[index] & trueMasks[remainder];
00184 return tmp > 0;
00185 }
00186
00187 inline int BitSet::size() const
00188 {
00189 return m_size;
00190 }
00191
00193 /* Iterate over bits in a BitSet. return true if bit is 1
00194
00195 example: 35 bits in bitset, BITSETWORDSIZE=8:
00196
00197 currently at the 22nd bit: (bit # =21)
00198
00199 |-m_index = 2---|
00200 +-------+-------+-------+-------+-------+
00201 1111111110001111111100011111111100011111
00202 ^ ^
00203 m_remainder |----| = 6 ^ ^
00204 |--| m_partialBits = 3
00205
00206 returns: false for operator()
00207 .
00208 */
00209 class BitSetIterator
00210 {
00211 public:
00213 BitSetIterator();
00214
00216 BitSetIterator(const BitSet& bitset);
00217
00218 // copy and assign should be fine
00219
00221 bool operator()() const;
00222
00224 bool ok() const;
00225
00227 void operator++();
00228
00230 void begin();
00231
00233 void end();
00234
00235 private:
00236 int m_index;
00237 int m_remainder;
00238 int m_length;
00239
00240 int m_partialBits;
00241 const BitSet* m_bitset;
00242 static BitSet emptyBitSet;
00243 };
00244
00245 inline
00246 BitSetIterator::BitSetIterator()
00247 :
00248 m_index(0),
00249 m_remainder(0),
00250 m_length(0),
00251 m_partialBits(0),
00252 m_bitset(&emptyBitSet)
00253 {}
00254
00255 inline
00256 BitSetIterator::BitSetIterator(const BitSet& a_bitset)
00257 :m_index(0), m_remainder(0), m_length(a_bitset.m_length - 1),
00258 m_partialBits(a_bitset.m_size - BITSETWORDSIZE*(a_bitset.m_length - 1)),
00259 m_bitset(&a_bitset)
00260 {
00261 if(m_partialBits == BITSETWORDSIZE)
00262 {
00263 m_partialBits = 0;
00264 m_length++;
00265 }
00266 }
00267
00268 inline
00269 bool BitSetIterator::operator()() const
00270 {
00271 return (m_bitset->m_bits[m_index] & BitSet::trueMasks[m_remainder] ) > 0;
00272 }
00273
00274 inline
00275 bool BitSetIterator::ok() const
00276 {
00277 if(m_index < m_length) return true;
00278 if(m_remainder < m_partialBits) return true;
00279 return false;
00280 }
00281
00282 inline
00283 void BitSetIterator::operator++()
00284 {
00285 ++m_remainder;
00286 if(m_remainder == BITSETWORDSIZE)
00287 {
00288 m_remainder = 0;
00289 ++m_index;
00290 }
00291 }
00292
00293 #endif
1.2.16