next up previous
Next: About this document ... Up: scidacfwp Previous: Software Development

Bibliography

1
M. Aftosmis, J. Melton, and M. Berger.
Robust and efficient Cartesian mesh generation for component-based geometry.
AIAA Journal, 36(6):952-960, June 1998.

2
A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. J. Welcome.
A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations.
J. Comput. Phys., 142(1):1-46, May 1998.

3
A. S. Almgren, T. Buttke, and P. Colella.
A fast adaptive vortex method in three dimensions.
J. Comput. Phys., 113(2):177-200, 1994.

4
C. R. Anderson.
A method of local corrections for computing the velocity field due to a distribution of vortex blobs.
J. Comput. Phys., 62:111-123, 1986.

5
G. Balls and P. Colella.
A finite difference domain decomposition method for solving Poisson's equation using local corrections.
Technical Report LBNL-45035, Lawrence Berkeley National Laboratory, January 2000.
submitted to J. Comput. Phys.

6
J. B. Bell, M. J. Berger, J. S. Saltzman, and M. Welcome.
A three-dimensional adaptive mesh refinement for hyperbolic conservation laws.
SIAM Journal on Scientific Computing, 15:127-138, 1994.

7
J. B. Bell, P. Colella, and M. Welcome.
A conservative front-tracking for inviscid compressible flow.
In Proceedings of the Tenth AIAA Computational Fluid Dynamics Conference, pages 814-822. AIAA, June 1991.

8
M. Berger and J. Oliger.
Adaptive mesh refinement for hyperbolic partial differential equations.
J. Comput. Phys., 53:484-512, March 1984.

9
M. J. Berger and P. Colella.
Local adaptive mesh refinement for shock hydrodynamics.
J. Comput. Phys., 82(1):64-84, May 1989.

10
Matthew Tyler Bettencourt.
A Block-Structured Adaptive Steady-State Solver for the Drift-Diffusion Equations.
PhD thesis, Dept. of Mechanical Engineering, Univ. of California, Berkeley, May 1998.

11
I.-L. Chern and P. Colella.
A conservative front tracking method for hyperbolic conservation laws.
Technical Report UCRL-97200, Lawrence Livermore National Laboratory, July 1987.

12
P. Colella, M. Dorr, and D. Wake.
Numerical solution of plasma fluid equations using locally refined grids.
J. Comput. Phys., 152:550-583, 1999.

13
W. Y. Crutchfield and M. Welcome.
Object-oriented implementation of adaptive mesh refinement algorithms.
Scientific Programming, 2(4):145-156, 1993.

14
S. A. Dudek and P. Colella.
Steady-state solution-adaptive euler computations on structured grids.
Technical Report AIAA-98-0543, American Institute of Aeronautics and Astronautics, January 1998.
presented at the AIAA 36th Aerospace Sciences Meeting, Reno, NV.

15
E. Esarey, P. Sprangle, J. Krall, and A. Ting.
Overview of plasma-based accelerator concepts.
Invited Review, IEEE Trans. Plasma Sci., PS-24:252-288, 1996.

16
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Grady Booch.
Design Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, 1995.

17
P. N. Hilfinger and P. Colella.
FIDIL: A language for scientific programming.
In Robert Grossman, editor, Symbolic Computing: Applications to Scientific Computing, Frontiers in Applied Mathematics, chapter 5, pages 97-138. SIAM, 1989.

18
L. H. Howell, R. B. Pember, P. Colella, J. P. Jessee, and W. A. Fiveland.
A conservative adaptive-mesh algorithm for unsteady, combined-mode heat transfer using the discrete ordinates method.
Numerical Heat Transfer, Part B: Fundamentals, 1999.
in press.

19
J. P. Jessee, W. A. Fiveland, L. H. Howell, P. Colella, and R. B. Pember.
An adaptive mesh refinement algorithm for the radiative transport equation.
J. Comput. Phys., 139(2):380-398, January 1998.

20
H. Johansen and P. Colella.
A Cartesian grid embedded boundary method for Poisson's equation on irregular domains.
J. Comput. Phys., 147(2):60-85, December 1998.

21
Hans Svend Johansen.
Cartesian Grid Embedded Boundary Methods for Elliptic and Parabolic Partial Differential Equations on Irregular Domains.
PhD thesis, Dept. of Mechanical Engineering, Univ. of California, Berkeley, December 1997.

22
D. F. Martin and P. Colella.
A cell-centered adaptive projection method for the incompressible euler equations.
J. Comput. Phys., 163(2):271-312, 2000.

23
P. McCorquodale, P. Colella, and H. Johansen.
A Cartesian grid embedded boundary method for the heat equation on irregular domains.
Technical Report LBNL-47459, Lawrence Berkeley National Laboratory, February 2001.
submitted to J. Comput. Phys.

24
G. H. Miller and E. G. Puckett.
A high-order Godunov method for multiple condensed phases.
J. Comput. Phys., 128(1):134-164, October 1996.

25
M. L. Minion.
Projection method for locally refined grids.
J. Comput. Phys., 127:158-178, 1996.

26
D Modiano and P. Colella.
A higher-order embedded boundary method for time-dependent simulation of hyperbolic conservation laws.
In Proceedings of the FEDSM 00 - ASME Fluids Engineering Simulation Meeting, Boston, MA, June 2000.

27
W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H. R. Strauss, and L. E. Sugiyama.
Plasma simulation using multilevel physics models.
Physics of Plasmas, 6(5):1796-1803, 1999.

28
R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome.
An adaptive Cartesian grid method for unsteady compressible flow in irregular regions.
J. Comput. Phys., 120:278-304, 1995.

29
R. M. Propp and P. Colella.
An adaptive mesh refinement algorithm for porous media flows.
submitted for publication, February 1999.

30
M. Sussman, A. S. Almgren, J. B. Bell, L. H. Howell, and M. L. Welcome.
An adaptive level set approach for incompressible two-phase flows.
J. Comput. Phys., 148(1):81-124, January 1999.

31
P. Volfbeyn, E. Esarey, and W.P. Leemans.
Guiding of laser pulses in plasma channels created by the ignitor-heater technique.
Invited Paper, Phys. Plasmas, 6:2269-2277, 1999.



Phil Colella 2002-03-04