Main Page   Class Hierarchy   Alphabetical List   Compound List   File List   Compound Members   File Members  

NodeLevelOp Class Reference

Pure base class to encapsulate level operations API for node-centered elliptic solvers. More...

#include <NodeLevelOp.H>

Inheritance diagram for NodeLevelOp:

Inheritance graph
[legend]
List of all members.

Public Methods

 NodeLevelOp ()
 {\bf constructors, destructor and defines}

virtual NodeLevelOp * new_levelop () const=0
virtual ~NodeLevelOp ()
virtual void define (const DisjointBoxLayout &a_grids, const DisjointBoxLayout *a_gridsCoarsePtr, Real a_dx, int a_refToCoarse, const ProblemDomain &a_domain, bool a_homogeneousOnly=false, int a_ncomp=1)=0
virtual void define (const DisjointBoxLayout &a_grids, const DisjointBoxLayout *a_gridsCoarsePtr, Real a_dx, int a_refToCoarse, const Box &a_domain, bool a_homogeneousOnly=false, int a_ncomp=1)=0
virtual void define (const NodeLevelOp *a_opfine, int a_refToFine)=0
virtual bool isDefined () const=0
 {\bf access functions}

virtual void CFInterp (LevelData< NodeFArrayBox > &a_phi, const LevelData< NodeFArrayBox > &a_phiCoarse, bool a_inhomogeneous)=0
 {\bf data modification functions}

virtual void homogeneousCFInterp (LevelData< NodeFArrayBox > &a_phi)=0
virtual void smooth (LevelData< NodeFArrayBox > &a_phi, const LevelData< NodeFArrayBox > &a_rhs)=0
virtual void residualI (LevelData< NodeFArrayBox > &a_resid, LevelData< NodeFArrayBox > &a_phi, const LevelData< NodeFArrayBox > *a_phiCoarsePtr, const LevelData< NodeFArrayBox > &a_rhs)=0
virtual void residualH (LevelData< NodeFArrayBox > &a_resid, LevelData< NodeFArrayBox > &a_phi, const LevelData< NodeFArrayBox > &a_rhs)=0
virtual void residualIcfHphys (LevelData< NodeFArrayBox > &a_resid, LevelData< NodeFArrayBox > &a_phi, const LevelData< NodeFArrayBox > *a_phiCoarsePtr, const LevelData< NodeFArrayBox > &a_rhs)=0
virtual void residualHcfIphys (LevelData< NodeFArrayBox > &a_resid, LevelData< NodeFArrayBox > &a_phi, const LevelData< NodeFArrayBox > &a_rhs)=0
virtual void applyOpI (LevelData< NodeFArrayBox > &a_LofPhi, LevelData< NodeFArrayBox > &a_phi, const LevelData< NodeFArrayBox > *a_phiCoarsePtr)=0
virtual void applyOpH (LevelData< NodeFArrayBox > &a_LofPhi, LevelData< NodeFArrayBox > &a_phi)=0
virtual void applyOpIcfHphys (LevelData< NodeFArrayBox > &a_LofPhi, LevelData< NodeFArrayBox > &a_phi, const LevelData< NodeFArrayBox > *a_phiCoarsePtr)=0
virtual void applyOpHcfIphys (LevelData< NodeFArrayBox > &a_LofPhi, LevelData< NodeFArrayBox > &a_phi)=0
virtual void levelPreconditioner (LevelData< NodeFArrayBox > &a_phihat, const LevelData< NodeFArrayBox > &a_rhshat)=0
virtual void bottomSmoother (LevelData< NodeFArrayBox > &a_phi, const LevelData< NodeFArrayBox > &a_rhs)=0

Public Attributes

ProblemDomain m_domain
LayoutData< Vector< IntVectSet > > m_IVSVext

Detailed Description

Pure base class to encapsulate level operations API for node-centered elliptic solvers.

NodeLevelOp is a pure base class to encapsulate level operations API for node-centered elliptic solvers. All elliptic operators used by AMRNodeSolver inherit the NodeLevelOp interface.


Constructor & Destructor Documentation

NodeLevelOp::NodeLevelOp   [inline]
 

{\bf constructors, destructor and defines}

Default constructor. User must subsequently call define().

virtual NodeLevelOp::~NodeLevelOp   [inline, virtual]
 

Destructor.


Member Function Documentation

virtual void NodeLevelOp::applyOpH LevelData< NodeFArrayBox > &    a_LofPhi,
LevelData< NodeFArrayBox > &    a_phi
[pure virtual]
 

Evaluate Operator, homogeneous C/F boundary conditions. homogeneous phys boundary conditions. \ The operator is evaluated on a_phi, after setting to zero at the coarse/fine boundary and applying homogeneous physical boundary conditions.

{\bf Arguments:}\ a_LofPhi (modified): the value of the operator.\ a_phi (modified): the data at this level.\

Implemented in NodePoissonOp.

virtual void NodeLevelOp::applyOpHcfIphys LevelData< NodeFArrayBox > &    a_LofPhi,
LevelData< NodeFArrayBox > &    a_phi
[pure virtual]
 

Evaluate Operator, homogeneous C/F boundary conditions. inhomogeneous phys boundary conditions. \ The operator is evaluated on a_phi, after setting to zero at the coarse/fine boundary and applying the physical boundary conditions.

{\bf Arguments:}\ a_LofPhi (modified): the value of the operator.\ a_phi (modified): the data at this level.\

Implemented in NodePoissonOp.

virtual void NodeLevelOp::applyOpI LevelData< NodeFArrayBox > &    a_LofPhi,
LevelData< NodeFArrayBox > &    a_phi,
const LevelData< NodeFArrayBox > *    a_phiCoarsePtr
[pure virtual]
 

Evaluate Operator, inhomogeneous C/F boundary conditions, inhomogeneous phys boundary conditions. \ The operator is evaluated on a_phi, after interpolating from a_phiCoarsePtr at the coarse/fine boundary and applying the physical boundary conditions.

{\bf Arguments:}\ a_LofPhi (modified): the value of the operator.\ a_phi (modified): the data at this level.\ a_phiCoarsePtr (not modified): pointer to data at next coarser level.\

Implemented in NodePoissonOp.

virtual void NodeLevelOp::applyOpIcfHphys LevelData< NodeFArrayBox > &    a_LofPhi,
LevelData< NodeFArrayBox > &    a_phi,
const LevelData< NodeFArrayBox > *    a_phiCoarsePtr
[pure virtual]
 

Evaluate Operator, inhomogeneous C/F boundary conditions, homogeneous phys boundary conditions. \ The operator is evaluated on a_phi, after interpolating from a_phiCoarsePtr at the coarse/fine boundary and applying homogeneous physical boundary conditions.

{\bf Arguments:}\ a_LofPhi (modified): the value of the operator.\ a_phi (modified): the data at this level.\ a_phiCoarsePtr (not modified): pointer to data at next coarser level.\

Implemented in NodePoissonOp.

virtual void NodeLevelOp::bottomSmoother LevelData< NodeFArrayBox > &    a_phi,
const LevelData< NodeFArrayBox > &    a_rhs
[pure virtual]
 

Smoother at bottom level.

{\bf Arguments:}\ a_phi (modified): the data at this level.\ a_rhs (not modified): right-hand side.\

Implemented in NodePoissonOp.

virtual void NodeLevelOp::CFInterp LevelData< NodeFArrayBox > &    a_phi,
const LevelData< NodeFArrayBox > &    a_phiCoarse,
bool    a_inhomogeneous
[pure virtual]
 

{\bf data modification functions}

Coarse / Fine (inhomogeneous) interpolation operator. Fill the nodes of a_phi on the coarse/fine interface with interpolated data from a_phiCoarse.

{\bf Arguments:}\ a_phi (modified): the data at this level.\ a_phiCoarse (not modified): the data at the next coarser level.\ a_inhomogeneous (not modified): inhomogeneous physical boundary condition?\

Implemented in NodePoissonOp.

virtual void NodeLevelOp::define const NodeLevelOp *    a_opfine,
int    a_refToFine
[pure virtual]
 

Full define function, based on a coarsening of the finer NodeLevelOp. Coarse-level grids are not set because only homogeneous interpolation is used.

{\bf Arguments:}\ a_opfine: pointer to NodeLevelOp at next finer level.\ a_refToFine: refinement ratio between a_opfine's and this level.\

Implemented in NodePoissonOp.

virtual void NodeLevelOp::define const DisjointBoxLayout &    a_grids,
const DisjointBoxLayout *    a_gridsCoarsePtr,
Real    a_dx,
int    a_refToCoarse,
const Box &    a_domain,
bool    a_homogeneousOnly = false,
int    a_ncomp = 1
[pure virtual]
 

Implemented in NodePoissonOp.

virtual void NodeLevelOp::define const DisjointBoxLayout &    a_grids,
const DisjointBoxLayout *    a_gridsCoarsePtr,
Real    a_dx,
int    a_refToCoarse,
const ProblemDomain &    a_domain,
bool    a_homogeneousOnly = false,
int    a_ncomp = 1
[pure virtual]
 

Full define function. Makes all coarse-fine information and sets internal variables. The current level is taken to be the fine level.

{\bf Arguments:}\ a_grids: domain of this level.\ a_gridsCoarsePtr: pointer to next coarser level domain, or NULL if none.\ a_dx: mesh spacing at this level.\ a_refToCoarse: refinement ratio between this and next coarser level.\ a_domain: physical domain at this level.\ a_homogeneousOnly: only homogeneous coarse-fine interpolation?\ a_ncomp: number of components.\

Implemented in NodePoissonOp.

virtual void NodeLevelOp::homogeneousCFInterp LevelData< NodeFArrayBox > &    a_phi [pure virtual]
 

Homogeneous coarse/fine interpolation operator. Fill the nodes of a_phi on the coarse/fine interface with zeroes.

{\bf Arguments:}\ a_phi (modified): the data at this level.\

Implemented in NodePoissonOp.

virtual bool NodeLevelOp::isDefined   const [pure virtual]
 

{\bf access functions}

Returns true if this object was created with the defining constructor or if define() has been called.

Implemented in NodePoissonOp.

virtual void NodeLevelOp::levelPreconditioner LevelData< NodeFArrayBox > &    a_phihat,
const LevelData< NodeFArrayBox > &    a_rhshat
[pure virtual]
 

apply preconditioning to the solution on this level. Given rhshat, returns phihat from M(phihat) = rhshat

{\bf Arguments:}\ a_phihat (modified): the data at this level.\ a_rhshat (not modified): right-hand side.\

virtual NodeLevelOp* NodeLevelOp::new_levelop   const [pure virtual]
 

This gets around the "no virtual constructor" rule.

Implemented in NodePoissonOp.

virtual void NodeLevelOp::residualH LevelData< NodeFArrayBox > &    a_resid,
LevelData< NodeFArrayBox > &    a_phi,
const LevelData< NodeFArrayBox > &    a_rhs
[pure virtual]
 

Evaluate residual of operator, a_resid = a_rhs - operator \ with homogeneous C/F boundary conditions. homogeneous phys boundary conditions. \ The operator is evaluated on a_phi, after setting to zero at the coarse/fine boundary and applying homogeneous physical boundary conditions.

{\bf Arguments:}\ a_resid (modified): the residual, at interior nodes.\ a_phi (modified): the data at this level.\ a_rhs (not modified): right-hand side.\

virtual void NodeLevelOp::residualHcfIphys LevelData< NodeFArrayBox > &    a_resid,
LevelData< NodeFArrayBox > &    a_phi,
const LevelData< NodeFArrayBox > &    a_rhs
[pure virtual]
 

Evaluate residual of operator, a_resid = a_rhs - operator \ with homogeneous C/F boundary conditions, inhomogeneous phys boundary conditions. \ The operator is evaluated on a_phi, after setting to zero at the coarse/fine boundary and applying the physical boundary conditions.

{\bf Arguments:}\ a_resid (modified): the residual, at interior nodes.\ a_phi (modified): the data at this level.\ a_rhs (not modified): right-hand side.\

virtual void NodeLevelOp::residualI LevelData< NodeFArrayBox > &    a_resid,
LevelData< NodeFArrayBox > &    a_phi,
const LevelData< NodeFArrayBox > *    a_phiCoarsePtr,
const LevelData< NodeFArrayBox > &    a_rhs
[pure virtual]
 

Evaluate residual of operator, a_resid = a_rhs - operator \ with inhomogeneous C/F boundary conditions, inhomogeneous phys boundary conditions. \ The operator is evaluated on a_phi, after interpolating from a_phiCoarsePtr at the coarse/fine boundary and applying the physical boundary conditions.

{\bf Arguments:}\ a_resid (modified): the residual, at interior nodes.\ a_phi (modified): the data at this level. Interpolated from a_phiCoarsePtr at coarse/fine boundary.\ a_phiCoarsePtr (not modified): pointer to data at next coarser level.\ a_rhs (not modified): right-hand side.\

virtual void NodeLevelOp::residualIcfHphys LevelData< NodeFArrayBox > &    a_resid,
LevelData< NodeFArrayBox > &    a_phi,
const LevelData< NodeFArrayBox > *    a_phiCoarsePtr,
const LevelData< NodeFArrayBox > &    a_rhs
[pure virtual]
 

Evaluate residual of operator, a_resid = a_rhs - operator \ with inhomogeneous C/F boundary conditions, homogeneous phys boundary conditions. \ The operator is evaluated on a_phi, after interpolating from a_phiCoarsePtr at the coarse/fine boundary and applying homogeneous physical boundary conditions.

{\bf Arguments:}\ a_resid (modified): the residual, at interior nodes.\ a_phi (modified): the data at this level. Interpolated from a_phiCoarsePtr at coarse/fine boundary.\ a_phiCoarsePtr (not modified): pointer to data at next coarser level.\ a_rhs (not modified): right-hand side.\

virtual void NodeLevelOp::smooth LevelData< NodeFArrayBox > &    a_phi,
const LevelData< NodeFArrayBox > &    a_rhs
[pure virtual]
 

Smoother. Assumes that problem has already been put in residual correction form, so that C/F boundary conditions are homogeneous.

{\bf Arguments:}\ a_phi (modified): the data at this level.\ a_rhs (not modified): right-hand side.\

Implemented in NodePoissonOp.


Member Data Documentation

ProblemDomain NodeLevelOp::m_domain
 

LayoutData< Vector<IntVectSet> > NodeLevelOp::m_IVSVext
 


The documentation for this class was generated from the following file:
Generated on Tue Apr 15 18:34:55 2003 for AMRNodeElliptic by doxygen1.2.16