#include <ScalarFunction.H>

. Public Member Functions | |
| ScalarFunction (bool a_homogeneous, bool a_constant) | |
| virtual | ~ScalarFunction () |
| Destructor. | |
| virtual Real | operator() (const RealVect &a_x, Real a_t) const =0 |
| virtual Real | derivative (const IntVect &a_order, const RealVect &a_x, Real a_t) const |
| virtual bool | hasDerivative (const IntVect &a_order) const |
| Real | operator() (const RealVect &a_x) const |
| Real | derivative (const IntVect &a_order, const RealVect &a_x) const |
| bool | isHomogeneous () const |
| Returns true if this function is homogeneous, false otherwise. | |
| bool | isConstant () const |
| Returns true if this function is constant, false otherwise. | |
Protected Attributes | |
| bool | m_isHomogeneous |
| bool | m_isConstant |
Private Member Functions | |
| ScalarFunction () | |
| ScalarFunction (const ScalarFunction &) | |
| ScalarFunction & | operator= (const ScalarFunction &) |
| ScalarFunction::ScalarFunction | ( | bool | a_homogeneous, | |
| bool | a_constant | |||
| ) |
Base class constructor. Must be called by subclasses.
| a_homogeneous | This flag indicates whether the scalar function is constant in space. | |
| a_constant | This flag indicates whether the scalar function is constant in time. |
| virtual ScalarFunction::~ScalarFunction | ( | ) | [virtual] |
Destructor.
| ScalarFunction::ScalarFunction | ( | ) | [private] |
| ScalarFunction::ScalarFunction | ( | const ScalarFunction & | ) | [private] |
Override this method to evaluate this function at the given point in space and time.
| a_x | A point in -dimensional space. | |
| a_t | The time at which the function is to be evaluated. |
Implemented in ConstantScalarFunction.
Referenced by operator()().
| virtual Real ScalarFunction::derivative | ( | const IntVect & | a_order, | |
| const RealVect & | a_x, | |||
| Real | a_t | |||
| ) | const [virtual] |
Override this method to evaluate the given partial derivative of the function at the given point in space and time.
| a_order | A multi-index identifying the order(s) of the partial derivative of the function to be evaluated. | |
| a_x | A point in -dimensional space. | |
| a_t | The time at which the derivative is to be evaluated. |
Reimplemented in ConstantScalarFunction.
Referenced by derivative().
| virtual bool ScalarFunction::hasDerivative | ( | const IntVect & | a_order | ) | const [virtual] |
Override this method to return true if the derivative of the requested order exists and is available, false if it is not. This must be implemented in a way that is consistent with the derivative method.
| a_order | A multi-index identifying the order(s) of the desired partial derivative of the function. |
This evaluates the function at time 0.
| a_x | A point in -dimensional space. |
References operator()().
This evaluates the given partial derivative of the function at time 0.
| a_order | A multi-index identifying the order(s) of the partial derivative of the function to be evaluated. | |
| a_x | A point in -dimensional space. |
References derivative().
| bool ScalarFunction::isHomogeneous | ( | ) | const [inline] |
| bool ScalarFunction::isConstant | ( | ) | const [inline] |
| ScalarFunction& ScalarFunction::operator= | ( | const ScalarFunction & | ) | [private] |
bool ScalarFunction::m_isHomogeneous [protected] |
Referenced by isHomogeneous().
bool ScalarFunction::m_isConstant [protected] |
Referenced by isConstant().
1.5.5