Chombo + EB + MF  3.2
Public Member Functions | Static Public Member Functions | Public Attributes | List of all members
IrregNode Class Reference

#include <IrregNode.H>

Public Member Functions

 IrregNode ()
 
 ~IrregNode ()
 
void makeRegular (const IntVect &iv, const Real &a_dx, const ProblemDomain &a_domain)
 
void faceReserve (int location, int size)
 
void setMomentsToZero ()
 for covered cells More...
 
void setMomentsToRegular (const Real &a_dx)
 
void spout ()
 
void setNormalizedStuff (const Real &a_dx)
 once the moments are set, this sets volfrac, areafrac, centroid... More...
 

Static Public Member Functions

static int index (int a_idir, Side::LoHiSide a_side)
 return the index into the arc vectors More...
 

Public Attributes

IntVect m_cell
 
Real m_volFrac
 data for irregular nodes More...
 
int m_cellIndex
 
RealVect m_volCentroid
 
RealVect m_bndryCentroid
 
Vector< int > m_arc [2 *SpaceDim]
 
Vector< Realm_areaFrac [2 *SpaceDim]
 
Vector< RealVectm_faceCentroid [2 *SpaceDim]
 
IndMomSpaceDim m_volumeMoments
 data for irregular nodes More...
 
IndMomSpaceDim m_EBMoments
 the normal*moment at the irregular face associated with the monomial with the input exponents More...
 
IndMomSpaceDim m_normalPartialDeriv [SpaceDim]
 
IndMomSDMinOne m_faceMoments [2 *SpaceDim]
 

Detailed Description

Node for construction of geometric information.

Constructor & Destructor Documentation

◆ IrregNode()

IrregNode::IrregNode ( )

◆ ~IrregNode()

IrregNode::~IrregNode ( )

Member Function Documentation

◆ index()

static int IrregNode::index ( int  a_idir,
Side::LoHiSide  a_side 
)
static

return the index into the arc vectors

◆ makeRegular()

void IrregNode::makeRegular ( const IntVect iv,
const Real a_dx,
const ProblemDomain a_domain 
)

helper function for construction. makes irregular cell that has connectivitity and values like a regular cell, this a person can modify as the irregular cell requires. saves some coding in some cases

◆ faceReserve()

void IrregNode::faceReserve ( int  location,
int  size 
)

◆ setMomentsToZero()

void IrregNode::setMomentsToZero ( )

for covered cells

◆ setMomentsToRegular()

void IrregNode::setMomentsToRegular ( const Real a_dx)

◆ spout()

void IrregNode::spout ( )
inline

◆ setNormalizedStuff()

void IrregNode::setNormalizedStuff ( const Real a_dx)

once the moments are set, this sets volfrac, areafrac, centroid...

Referenced by spout().

Member Data Documentation

◆ m_cell

IntVect IrregNode::m_cell

◆ m_volFrac

Real IrregNode::m_volFrac

data for irregular nodes

◆ m_cellIndex

int IrregNode::m_cellIndex

each vof has a unique index in the cell

◆ m_volCentroid

RealVect IrregNode::m_volCentroid

◆ m_bndryCentroid

RealVect IrregNode::m_bndryCentroid

◆ m_arc

Vector<int> IrregNode::m_arc[2 *SpaceDim]

Indicies into a_nodes to show connectivity. If the arc is to an irregular cell, the index is the unique index of the vof in the cell. For arcs to regular cells, the arc = -2 If the arc is to the domain boundary, arc = -1.

◆ m_areaFrac

Vector<Real> IrregNode::m_areaFrac[2 *SpaceDim]

◆ m_faceCentroid

Vector<RealVect> IrregNode::m_faceCentroid[2 *SpaceDim]

◆ m_volumeMoments

IndMomSpaceDim IrregNode::m_volumeMoments

data for irregular nodes

the moment at the VoF associated with the monomial with the input exponents Given VoF variables x, y, z, p = mono(0), q = mono(1), r = mono(2), returns integral_over_VoF(x^p y^q z^r dV)

◆ m_EBMoments

IndMomSpaceDim IrregNode::m_EBMoments

the normal*moment at the irregular face associated with the monomial with the input exponents

Given VoF variables x, y, z, p = mono(0), q = mono(1), r = mono(2), returns integral_over_irregular_area((x^p y^q z^r)*n_i dA)the moment at the irregular face associated with the monomial with the input exponents Given VoF variables x, y, z, p = mono(0), q = mono(1), r = mono(2), returns integral_over_irregular_area((x^p y^q z^r) dA)

◆ m_normalPartialDeriv

IndMomSpaceDim IrregNode::m_normalPartialDeriv[SpaceDim]

◆ m_faceMoments

IndMomSDMinOne IrregNode::m_faceMoments[2 *SpaceDim]

face centered moments the moment at the face associated with the monomial with the input exponents Given face variables x, y, p = mono(0), q = mono(1) returns integral_over_face_area((x^p y^q ) dA)


The documentation for this class was generated from the following file: