Chombo + EB + MF
3.2
|
#include <SmoothAbsoluteValue.H>
Public Member Functions | |
SmoothAbsoluteValue (const BaseIF *a_f, const BaseIF *a_g, const Real &a_delta) | |
virtual | ~SmoothAbsoluteValue () |
virtual Real | smoothAbsFMinusG (const IntVect &a_deriv, const RealVect &a_point) const |
void | getWCase (int &a_case, Real &a_wval, const RealVect &a_point) const |
Static Public Member Functions | |
static void | setKnownFunction (int a_whichfunc) |
Protected Member Functions | |
virtual Real | valueAem (const RealVect &a_point) const |
virtual Real | firstDerivAem (const IntVect &a_deriv, const RealVect &a_point) const |
virtual Real | secondDerivAem (const IntVect &a_deriv, const RealVect &a_point) const |
virtual Real | thirdDerivAem (const IntVect &a_deriv, const RealVect &a_point) const |
virtual Real | fourthDerivAem (const IntVect &a_deriv, const RealVect &a_point) const |
bool | isBogus (const Real &a_number) const |
just checks nan More... | |
void | checkAgainstKnown (const Real &a_myAnswer, const IntVect &a_deriv, const RealVect &a_point) const |
if s_knownFunc is set, check against known answer More... | |
Protected Attributes | |
const BaseIF * | m_f |
const BaseIF * | m_g |
Real | m_d |
Real | m_pi |
Static Protected Attributes | |
static int | s_knownFunc |
for debugging against known functions More... | |
Private Member Functions | |
SmoothAbsoluteValue (const SmoothAbsoluteValue &a_inputIF) | |
SmoothAbsoluteValue () | |
void | operator= (const SmoothAbsoluteValue &a_inputIF) |
Functions to take a smooth absolute value of the difference between two functions A_e(a,b) = |a-b|
max(f, g) = (a + b + |a - b|)/2 We need to make abs(a-b) smooth.
We take the convolution of the absolute value with cos^4(pi w/(2 delta))
|
inlinevirtual |
References checkAgainstKnown(), firstDerivAem(), fourthDerivAem(), getWCase(), isBogus(), secondDerivAem(), smoothAbsFMinusG(), thirdDerivAem(), and valueAem().
|
inlineprivate |
References MayDay::Abort().
|
inlineprivate |
References MayDay::Abort().
|
inlinestatic |
Set a known f and g (from short list I have programmed) to check answer against 1 = double ramp with ramp_normal_0 = 2. 1. 0. ramp_normal_1 = -2. 1. 0. ramp_point_0 = 0. 1. 0. ramp_point_1 = 1. 1. 0.
2 = double sphere with sphere_center_0 = 0 0 0 sphere_center_1 = 1 0 0 sphere_radius_0 = 0.75 sphere_radius_1 = 0.75
References s_knownFunc.
|
virtual |
Referenced by ~SmoothAbsoluteValue().
returns -1 if w < -delta, 1 if w > delta, 0 otherwise reduces to regular |f-g| unless case == 0
Referenced by ~SmoothAbsoluteValue().
Here is the logic of this stuff. We have three cases that reduce to two cases. w = f(x) - g(x) case 1: (w > delta): -— whole integral is above zero answer = abs(w) case -1: (w < - delta): -— whole integral is below zero answer = abs(w) case 0: (-delta <= w <= delta) — have to split integral into above and below answer = functionAem();
Referenced by DoubleRampExact::~DoubleRampExact(), DoubleSphereExact::~DoubleSphereExact(), OffsetSphereExact::~OffsetSphereExact(), and ~SmoothAbsoluteValue().
|
protected |
just checks nan
Referenced by ~SmoothAbsoluteValue().
|
protected |
if s_knownFunc is set, check against known answer
Referenced by ~SmoothAbsoluteValue().
|
inlineprivate |
References MayDay::Abort().
|
protected |
Referenced by SmoothAbsoluteValue().
|
protected |
Referenced by SmoothAbsoluteValue().
|
protected |
|
protected |
|
staticprotected |
for debugging against known functions
Referenced by setKnownFunction().