Chombo + EB + MF  3.2
Classes | Macros | Functions | Variables
BoxLayoutData.H File Reference
#include "LayoutData.H"
#include "Interval.H"
#include "FArrayBox.H"
#include "DisjointBoxLayout.H"
#include "Copier.H"
#include "SPMD.H"
#include "memtrack.H"
#include "NamespaceHeader.H"
#include "NamespaceFooter.H"
#include "BoxLayoutDataI.H"
Include dependency graph for BoxLayoutData.H:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  DataFactory< T >
 Factory object to data members of a BoxLayoutData container. More...
 
class  DefaultDataFactory< T >
 Factory object to data members of a BoxLayoutData container. More...
 
class  FABAliasDataFactory
 
class  BoxLayoutData< T >
 Data on a BoxLayout. More...
 
class  AliasDataFactory< T >
 
class  FABAliasFlBxDataFactory
 
class  FaceFabDataFactory
 
class  LevelData< T >
 new code More...
 
class  LDOperator< T >
 
class  BoxLayoutData< T >
 Data on a BoxLayout. More...
 

Macros

#define _BOXLAYOUTDATA_H_
 

Functions

Real norm (const BoxLayoutData< FArrayBox > &A, const Interval &interval, const int &p=2)
 

Variables

int LinearizationTest
 

Macro Definition Documentation

◆ _BOXLAYOUTDATA_H_

#define _BOXLAYOUTDATA_H_

Function Documentation

◆ norm()

Real norm ( const BoxLayoutData< FArrayBox > &  A,
const Interval interval,
const int &  p = 2 
)

not actually L-p norms, since it doesn't take into account the dx of the system. A user can take that into account or not.

For p != 0, returns pth root of sum of pth powers over all points in all fabs and all components in the interval:

( sum [ |A[i][pt,var]|^p : FArrayBox A[i], point pt in A[i].box(), var in interval ] )^(1/p)

To turn into an L-p norm, one needs to multiply this by dx^(SpaceDim/p).

For p == 0, returns global max over all points in all fabs and all components in the interval:

max [ |A[i][pt,var]| : FArrayBox A[i], point pt in A[i].box(), var in interval ]

Some people don't like that this norm is not normalized based on number of points in A. Normalization is your problem.

Referenced by EBArith::getVofLocation(), PetscSolver< LevelData< FArrayBox > >::normInfinity(), BiCGStabSolver< LevelData< T > >::solve(), and RelaxSolver< T >::solve().

Variable Documentation

◆ LinearizationTest

int LinearizationTest